{"title":"利用细粒度调光提高 LiFi 吞吐量","authors":"Xiao Zhang, James Mariani, Li Xiao, Matt W. Mutka","doi":"10.1145/3643814","DOIUrl":null,"url":null,"abstract":"<p>Optical wireless communication (OWC) shows great potential due to its broad spectrum and the exceptional intensity switching speed of LEDs. Under poor conditions, most OWC systems switch from complex and more error prone high-order modulation schemes to more robust On-Off Keying (OOK) modulation defined in the IEEE OWC standard. This paper presents LiFOD, a high-speed indoor OOK-based OWC system with fine-grained dimming support. While ensuring fine-grained dimming, LiFOD remarkably achieves robust communication at up to 400 Kbps at a distance of 6 meters. This is the first time that the data rate has improved via OWC dimming in comparison to the previous approaches that consider trading off dimming and communication. LiFOD makes two key technical contributions. First, LiFOD utilizes Compensation Symbols (CS) as a reliable side-channel to represent bit patterns dynamically and improve throughput. We firstly design greedy-based bit pattern mining. Then we propose 2D feature enhancement via YOLO model for real-time bit pattern mining. Second, LiFOD synchronously redesigns optical symbols and CS relocation schemes for fine-grained dimming and robust decoding. Experiments on low-cost Beaglebone prototypes with commercial LED lamps and the photodiode (PD) demonstrate that LiFOD significantly outperforms the state-of-art system with 2.1x throughput on the SIGCOMM17 data-trace.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"53 29 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting Fine-grained Dimming with Improved LiFi Throughput\",\"authors\":\"Xiao Zhang, James Mariani, Li Xiao, Matt W. Mutka\",\"doi\":\"10.1145/3643814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optical wireless communication (OWC) shows great potential due to its broad spectrum and the exceptional intensity switching speed of LEDs. Under poor conditions, most OWC systems switch from complex and more error prone high-order modulation schemes to more robust On-Off Keying (OOK) modulation defined in the IEEE OWC standard. This paper presents LiFOD, a high-speed indoor OOK-based OWC system with fine-grained dimming support. While ensuring fine-grained dimming, LiFOD remarkably achieves robust communication at up to 400 Kbps at a distance of 6 meters. This is the first time that the data rate has improved via OWC dimming in comparison to the previous approaches that consider trading off dimming and communication. LiFOD makes two key technical contributions. First, LiFOD utilizes Compensation Symbols (CS) as a reliable side-channel to represent bit patterns dynamically and improve throughput. We firstly design greedy-based bit pattern mining. Then we propose 2D feature enhancement via YOLO model for real-time bit pattern mining. Second, LiFOD synchronously redesigns optical symbols and CS relocation schemes for fine-grained dimming and robust decoding. Experiments on low-cost Beaglebone prototypes with commercial LED lamps and the photodiode (PD) demonstrate that LiFOD significantly outperforms the state-of-art system with 2.1x throughput on the SIGCOMM17 data-trace.</p>\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\"53 29 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3643814\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643814","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Exploiting Fine-grained Dimming with Improved LiFi Throughput
Optical wireless communication (OWC) shows great potential due to its broad spectrum and the exceptional intensity switching speed of LEDs. Under poor conditions, most OWC systems switch from complex and more error prone high-order modulation schemes to more robust On-Off Keying (OOK) modulation defined in the IEEE OWC standard. This paper presents LiFOD, a high-speed indoor OOK-based OWC system with fine-grained dimming support. While ensuring fine-grained dimming, LiFOD remarkably achieves robust communication at up to 400 Kbps at a distance of 6 meters. This is the first time that the data rate has improved via OWC dimming in comparison to the previous approaches that consider trading off dimming and communication. LiFOD makes two key technical contributions. First, LiFOD utilizes Compensation Symbols (CS) as a reliable side-channel to represent bit patterns dynamically and improve throughput. We firstly design greedy-based bit pattern mining. Then we propose 2D feature enhancement via YOLO model for real-time bit pattern mining. Second, LiFOD synchronously redesigns optical symbols and CS relocation schemes for fine-grained dimming and robust decoding. Experiments on low-cost Beaglebone prototypes with commercial LED lamps and the photodiode (PD) demonstrate that LiFOD significantly outperforms the state-of-art system with 2.1x throughput on the SIGCOMM17 data-trace.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.