NSClean:从 JWST NIRSpec 图像中去除相关噪声的算法

IF 3.3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Publications of the Astronomical Society of the Pacific Pub Date : 2024-01-30 DOI:10.1088/1538-3873/ad1b36
Bernard J. Rauscher
{"title":"NSClean:从 JWST NIRSpec 图像中去除相关噪声的算法","authors":"Bernard J. Rauscher","doi":"10.1088/1538-3873/ad1b36","DOIUrl":null,"url":null,"abstract":"NSClean is an algorithm and python package for removing faint vertical banding and “picture frame noise” from JWST Near Infrared Spectrograph (NIRSpec) images. NSClean uses known dark areas to fit a background model to each exposure in Fourier space. When the model is subtracted, it removes nearly all correlated noise. Compared to simpler strategies like subtracting the rolling median, NSClean is more thorough and uniform. NSClean has been developed and tested for NIRSpec IFU mode data, although it can be used on other NIRSpec modes as well. NSClean is computationally undemanding, requiring only a few seconds to clean an image on a typical laptop. The NSClean package is freely available from the NASA JWST website.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"24 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NSClean: An Algorithm for Removing Correlated Noise from JWST NIRSpec Images\",\"authors\":\"Bernard J. Rauscher\",\"doi\":\"10.1088/1538-3873/ad1b36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NSClean is an algorithm and python package for removing faint vertical banding and “picture frame noise” from JWST Near Infrared Spectrograph (NIRSpec) images. NSClean uses known dark areas to fit a background model to each exposure in Fourier space. When the model is subtracted, it removes nearly all correlated noise. Compared to simpler strategies like subtracting the rolling median, NSClean is more thorough and uniform. NSClean has been developed and tested for NIRSpec IFU mode data, although it can be used on other NIRSpec modes as well. NSClean is computationally undemanding, requiring only a few seconds to clean an image on a typical laptop. The NSClean package is freely available from the NASA JWST website.\",\"PeriodicalId\":20820,\"journal\":{\"name\":\"Publications of the Astronomical Society of the Pacific\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Astronomical Society of the Pacific\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1538-3873/ad1b36\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of the Pacific","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1538-3873/ad1b36","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

NSClean 是一种算法和 python 软件包,用于去除 JWST 近红外摄谱仪(NIRSpec)图像中微弱的垂直条带和 "画框噪声"。NSClean 使用已知暗区在傅立叶空间中为每次曝光拟合一个背景模型。当减去该模型时,它几乎可以去除所有相关噪声。与减去滚动中值等简单策略相比,NSClean 更彻底、更均匀。NSClean 是针对 NIRSpec IFU 模式数据开发和测试的,但也可用于 NIRSpec 的其他模式。NSClean 的计算要求不高,在普通笔记本电脑上只需几秒钟就能完成图像清理。NSClean 软件包可从 NASA JWST 网站免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NSClean: An Algorithm for Removing Correlated Noise from JWST NIRSpec Images
NSClean is an algorithm and python package for removing faint vertical banding and “picture frame noise” from JWST Near Infrared Spectrograph (NIRSpec) images. NSClean uses known dark areas to fit a background model to each exposure in Fourier space. When the model is subtracted, it removes nearly all correlated noise. Compared to simpler strategies like subtracting the rolling median, NSClean is more thorough and uniform. NSClean has been developed and tested for NIRSpec IFU mode data, although it can be used on other NIRSpec modes as well. NSClean is computationally undemanding, requiring only a few seconds to clean an image on a typical laptop. The NSClean package is freely available from the NASA JWST website.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Publications of the Astronomical Society of the Pacific
Publications of the Astronomical Society of the Pacific 地学天文-天文与天体物理
CiteScore
6.70
自引率
5.70%
发文量
103
审稿时长
4-8 weeks
期刊介绍: The Publications of the Astronomical Society of the Pacific (PASP), the technical journal of the Astronomical Society of the Pacific (ASP), has been published regularly since 1889, and is an integral part of the ASP''s mission to advance the science of astronomy and disseminate astronomical information. The journal provides an outlet for astronomical results of a scientific nature and serves to keep readers in touch with current astronomical research. It contains refereed research and instrumentation articles, invited and contributed reviews, tutorials, and dissertation summaries.
期刊最新文献
The Valuable Long-period Cluster Cepheid KQ Scorpii and other Calibration Candidates A New Parameterization for Finding Solutions for Microlensing Exoplanet Light Curves Multi-amplifier Sensing Charge-coupled Devices for Next Generation Spectroscopy Ejecta Masses in Type Ia Supernovae—Implications for the Progenitor and the Explosion Scenario* * Based in part on observations obtained with the Hobby-Eberly Telescope (HET), which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Ludwig-Maximillians-Universitaet Muenchen, and Georg-August Universitaet Goettingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. Physical Properties of Embedded Clusters in ATLASGAL Clumps with H ii Regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1