{"title":"通过缩放图像分析、线栅分析和实验室筛分分析的综合方法确定滑坡碎屑的完整粒度分布","authors":"Sandaruwan Karunarathna, Satoshi Goto, Sajith Bandaranayake, Priyantha Bandara","doi":"10.1186/s40677-024-00270-z","DOIUrl":null,"url":null,"abstract":"Ground failures in a slope due to gravity, are commonly known as landslides. Depend on the compositional, geological, and structural characteristics of the unstable initiation zone and the erosional composition of the propagation zone decide the complete particle size distribution of the moving mass and its gradation. This information is most important for the study of downslope movement. Only laboratory sieve analysis cannot fulfil this target because the natural debris contains a wide range of particle sizes, especially boulders. The combined method of scaled image analysis and laboratory sieve analysis or the combined method of line-grid analysis and laboratory sieve analysis was proposed to fulfil the requirement. To study the proposed combined methods, five different locations within the downslope propagation zone from the Aranayake landslide in Sri Lanka were surveyed and analyzed. In image analysis, the high-resolution scaled image of deposited debris was analyzed by computer-based image analysis for particle sizes. Small particles were addressed by the laboratory sieve analysis using the representative debris sample taken from the same location. If the boulder sizes within the debris are too big to address this method, then the Line-grid method was performed. The particles in every 0.5 m along a measured line of debris deposition were measured in this method. If the selected location contains small particles that cannot measured manually, the representative sample was used for the laboratory sieve analysis to fulfil this range. The results of three locations indicated a 40% distribution of < 10 mm and a 60% distribution of > 10 mm representing the general distribution of the debris. Two distributions deviated from the general distribution that was surveyed and analyzed from special locations of the “near boundary of flow path” and “slope change zone” of the landslide. The combined methodology yielded successful results of complete particle size distribution for the wide range of particle sizes in debris. The variation of the particle size distribution curves of debris along the downslope depositions is planned to be used for the study of downslope propagation, damage zone assessment studies, and predicting the representative composition of future failures.","PeriodicalId":37025,"journal":{"name":"Geoenvironmental Disasters","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of the complete particle size distribution of landslide debris by the combined method of scaled image analysis, line-grid analysis and laboratory sieve analysis\",\"authors\":\"Sandaruwan Karunarathna, Satoshi Goto, Sajith Bandaranayake, Priyantha Bandara\",\"doi\":\"10.1186/s40677-024-00270-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ground failures in a slope due to gravity, are commonly known as landslides. Depend on the compositional, geological, and structural characteristics of the unstable initiation zone and the erosional composition of the propagation zone decide the complete particle size distribution of the moving mass and its gradation. This information is most important for the study of downslope movement. Only laboratory sieve analysis cannot fulfil this target because the natural debris contains a wide range of particle sizes, especially boulders. The combined method of scaled image analysis and laboratory sieve analysis or the combined method of line-grid analysis and laboratory sieve analysis was proposed to fulfil the requirement. To study the proposed combined methods, five different locations within the downslope propagation zone from the Aranayake landslide in Sri Lanka were surveyed and analyzed. In image analysis, the high-resolution scaled image of deposited debris was analyzed by computer-based image analysis for particle sizes. Small particles were addressed by the laboratory sieve analysis using the representative debris sample taken from the same location. If the boulder sizes within the debris are too big to address this method, then the Line-grid method was performed. The particles in every 0.5 m along a measured line of debris deposition were measured in this method. If the selected location contains small particles that cannot measured manually, the representative sample was used for the laboratory sieve analysis to fulfil this range. The results of three locations indicated a 40% distribution of < 10 mm and a 60% distribution of > 10 mm representing the general distribution of the debris. Two distributions deviated from the general distribution that was surveyed and analyzed from special locations of the “near boundary of flow path” and “slope change zone” of the landslide. The combined methodology yielded successful results of complete particle size distribution for the wide range of particle sizes in debris. The variation of the particle size distribution curves of debris along the downslope depositions is planned to be used for the study of downslope propagation, damage zone assessment studies, and predicting the representative composition of future failures.\",\"PeriodicalId\":37025,\"journal\":{\"name\":\"Geoenvironmental Disasters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoenvironmental Disasters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40677-024-00270-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenvironmental Disasters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40677-024-00270-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Identification of the complete particle size distribution of landslide debris by the combined method of scaled image analysis, line-grid analysis and laboratory sieve analysis
Ground failures in a slope due to gravity, are commonly known as landslides. Depend on the compositional, geological, and structural characteristics of the unstable initiation zone and the erosional composition of the propagation zone decide the complete particle size distribution of the moving mass and its gradation. This information is most important for the study of downslope movement. Only laboratory sieve analysis cannot fulfil this target because the natural debris contains a wide range of particle sizes, especially boulders. The combined method of scaled image analysis and laboratory sieve analysis or the combined method of line-grid analysis and laboratory sieve analysis was proposed to fulfil the requirement. To study the proposed combined methods, five different locations within the downslope propagation zone from the Aranayake landslide in Sri Lanka were surveyed and analyzed. In image analysis, the high-resolution scaled image of deposited debris was analyzed by computer-based image analysis for particle sizes. Small particles were addressed by the laboratory sieve analysis using the representative debris sample taken from the same location. If the boulder sizes within the debris are too big to address this method, then the Line-grid method was performed. The particles in every 0.5 m along a measured line of debris deposition were measured in this method. If the selected location contains small particles that cannot measured manually, the representative sample was used for the laboratory sieve analysis to fulfil this range. The results of three locations indicated a 40% distribution of < 10 mm and a 60% distribution of > 10 mm representing the general distribution of the debris. Two distributions deviated from the general distribution that was surveyed and analyzed from special locations of the “near boundary of flow path” and “slope change zone” of the landslide. The combined methodology yielded successful results of complete particle size distribution for the wide range of particle sizes in debris. The variation of the particle size distribution curves of debris along the downslope depositions is planned to be used for the study of downslope propagation, damage zone assessment studies, and predicting the representative composition of future failures.
期刊介绍:
Geoenvironmental Disasters is an international journal with a focus on multi-disciplinary applied and fundamental research and the effects and impacts on infrastructure, society and the environment of geoenvironmental disasters triggered by various types of geo-hazards (e.g. earthquakes, volcanic activity, landslides, tsunamis, intensive erosion and hydro-meteorological events).
The integrated study of Geoenvironmental Disasters is an emerging and composite field of research interfacing with areas traditionally within civil engineering, earth sciences, atmospheric sciences and the life sciences. It centers on the interactions within and between the Earth''s ground, air and water environments, all of which are affected by climate, geological, morphological and anthropological processes; and biological and ecological cycles. Disasters are dynamic forces which can change the Earth pervasively, rapidly, or abruptly, and which can generate lasting effects on the natural and built environments.
The journal publishes research papers, case studies and quick reports of recent geoenvironmental disasters, review papers and technical reports of various geoenvironmental disaster-related case studies. The focus on case studies and quick reports of recent geoenvironmental disasters helps to advance the practical understanding of geoenvironmental disasters and to inform future research priorities; they are a major component of the journal. The journal aims for the rapid publication of research papers at a high scientific level. The journal welcomes proposals for special issues reflecting the trends in geoenvironmental disaster reduction and monothematic issues. Researchers and practitioners are encouraged to submit original, unpublished contributions.