退化的 RC 钟楼的运行模态分析、地震脆弱性评估和改造

IF 3.6 2区 工程技术 Q1 ENGINEERING, CIVIL Journal of Civil Structural Health Monitoring Pub Date : 2024-02-14 DOI:10.1007/s13349-024-00765-1
Simone Castelli, Simone Labò, Andrea Belleri, Babak Moaveni
{"title":"退化的 RC 钟楼的运行模态分析、地震脆弱性评估和改造","authors":"Simone Castelli, Simone Labò, Andrea Belleri, Babak Moaveni","doi":"10.1007/s13349-024-00765-1","DOIUrl":null,"url":null,"abstract":"<p>This paper presents damage assessment through Operational Modal Analysis (OMA) and Finite Element (FE) model updating of the bell tower of the church of Castro in Bergamo, Italy. The tower is a 39 m high reinforced concrete structure with hollow cross-section and double-curved shape. The research was dictated by the need to identify the actual damage state of the structure, which was found through visual inspections. Piezoelectric accelerometers were used to record the ambient vibrations in subsequent test setups, using the roving technique for system identification. A detailed FE model was created with shell elements and calibrated to match the system identification results. A simplified beam model was then developed based on the modal analysis results of the detailed model. A sensitivity analysis was performed to identify the most influential model parameters on the modal characteristics of the system. Subsequently, the optimal values of these parameters were determined by an optimisation procedure carried out using a typical global optimization algorithm. The updating results allowed assessment of the actual condition of the bell tower and its seismic vulnerability. Finally, a seismic strengthening solution was recommended.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":"3 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operational modal analysis, seismic vulnerability assessment and retrofit of a degraded RC bell tower\",\"authors\":\"Simone Castelli, Simone Labò, Andrea Belleri, Babak Moaveni\",\"doi\":\"10.1007/s13349-024-00765-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents damage assessment through Operational Modal Analysis (OMA) and Finite Element (FE) model updating of the bell tower of the church of Castro in Bergamo, Italy. The tower is a 39 m high reinforced concrete structure with hollow cross-section and double-curved shape. The research was dictated by the need to identify the actual damage state of the structure, which was found through visual inspections. Piezoelectric accelerometers were used to record the ambient vibrations in subsequent test setups, using the roving technique for system identification. A detailed FE model was created with shell elements and calibrated to match the system identification results. A simplified beam model was then developed based on the modal analysis results of the detailed model. A sensitivity analysis was performed to identify the most influential model parameters on the modal characteristics of the system. Subsequently, the optimal values of these parameters were determined by an optimisation procedure carried out using a typical global optimization algorithm. The updating results allowed assessment of the actual condition of the bell tower and its seismic vulnerability. Finally, a seismic strengthening solution was recommended.</p>\",\"PeriodicalId\":48582,\"journal\":{\"name\":\"Journal of Civil Structural Health Monitoring\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Civil Structural Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13349-024-00765-1\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Structural Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13349-024-00765-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文通过对意大利贝尔加莫卡斯特罗教堂钟楼的运行模态分析(OMA)和有限元(FE)模型更新,对钟楼的损坏情况进行了评估。钟楼是一座 39 米高的钢筋混凝土结构,具有中空截面和双曲线形状。这项研究主要是为了确定结构的实际损坏状态,而这种损坏状态是通过目视检查发现的。在随后的测试设置中,使用压电加速度计记录环境振动,并使用巡回技术进行系统识别。使用壳元素创建了详细的 FE 模型,并进行了校准,以与系统识别结果相匹配。然后,根据详细模型的模态分析结果,建立了简化梁模型。通过敏感性分析,确定了对系统模态特征影响最大的模型参数。随后,使用典型的全局优化算法,通过优化程序确定了这些参数的最佳值。更新结果可用于评估钟楼的实际状况及其抗震脆弱性。最后,提出了抗震加固方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Operational modal analysis, seismic vulnerability assessment and retrofit of a degraded RC bell tower

This paper presents damage assessment through Operational Modal Analysis (OMA) and Finite Element (FE) model updating of the bell tower of the church of Castro in Bergamo, Italy. The tower is a 39 m high reinforced concrete structure with hollow cross-section and double-curved shape. The research was dictated by the need to identify the actual damage state of the structure, which was found through visual inspections. Piezoelectric accelerometers were used to record the ambient vibrations in subsequent test setups, using the roving technique for system identification. A detailed FE model was created with shell elements and calibrated to match the system identification results. A simplified beam model was then developed based on the modal analysis results of the detailed model. A sensitivity analysis was performed to identify the most influential model parameters on the modal characteristics of the system. Subsequently, the optimal values of these parameters were determined by an optimisation procedure carried out using a typical global optimization algorithm. The updating results allowed assessment of the actual condition of the bell tower and its seismic vulnerability. Finally, a seismic strengthening solution was recommended.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Civil Structural Health Monitoring
Journal of Civil Structural Health Monitoring Engineering-Safety, Risk, Reliability and Quality
CiteScore
8.10
自引率
11.40%
发文量
105
期刊介绍: The Journal of Civil Structural Health Monitoring (JCSHM) publishes articles to advance the understanding and the application of health monitoring methods for the condition assessment and management of civil infrastructure systems. JCSHM serves as a focal point for sharing knowledge and experience in technologies impacting the discipline of Civionics and Civil Structural Health Monitoring, especially in terms of load capacity ratings and service life estimation.
期刊最新文献
Development and implementation of medium-fidelity physics-based model for hybrid digital twin-based damage identification of piping structures Innovated bridge health diagnosis model using bridge critical frequency ratio R–C–C fusion classifier for automatic damage detection of heritage building using 3D laser scanning An AIoT system for real-time monitoring and forecasting of railway temperature Environmental effects on the experimental modal parameters of masonry buildings: experiences from the Italian Seismic Observatory of Structures (OSS) network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1