{"title":"一类三阶非线性延迟动态方程的渐近行为和振荡","authors":"Xianyong Huang, Xunhuan Deng, Qiru Wang","doi":"10.1007/s10473-024-0309-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a class of third-order nonlinear delay dynamic equations. First, we establish a Kiguradze-type lemma and some useful estimates. Second, we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero. Third, we obtain new oscillation criteria by employing the Pötzsche chain rule. Then, using the generalized Riccati transformation technique and averaging method, we establish the Philos-type oscillation criteria. Surprisingly, the integral value of the Philos-type oscillation criteria, which guarantees that all unbounded solutions oscillate, is greater than <i>θ</i><sub>4</sub>(<i>t</i><sub>1</sub>, <i>T</i>). The results of Theorem 3.5 and Remark 3.6 are novel. Finally, we offer four examples to illustrate our results.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The asymptotic behavior and oscillation for a class of third-order nonlinear delay dynamic equations\",\"authors\":\"Xianyong Huang, Xunhuan Deng, Qiru Wang\",\"doi\":\"10.1007/s10473-024-0309-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider a class of third-order nonlinear delay dynamic equations. First, we establish a Kiguradze-type lemma and some useful estimates. Second, we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero. Third, we obtain new oscillation criteria by employing the Pötzsche chain rule. Then, using the generalized Riccati transformation technique and averaging method, we establish the Philos-type oscillation criteria. Surprisingly, the integral value of the Philos-type oscillation criteria, which guarantees that all unbounded solutions oscillate, is greater than <i>θ</i><sub>4</sub>(<i>t</i><sub>1</sub>, <i>T</i>). The results of Theorem 3.5 and Remark 3.6 are novel. Finally, we offer four examples to illustrate our results.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0309-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0309-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The asymptotic behavior and oscillation for a class of third-order nonlinear delay dynamic equations
In this paper, we consider a class of third-order nonlinear delay dynamic equations. First, we establish a Kiguradze-type lemma and some useful estimates. Second, we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero. Third, we obtain new oscillation criteria by employing the Pötzsche chain rule. Then, using the generalized Riccati transformation technique and averaging method, we establish the Philos-type oscillation criteria. Surprisingly, the integral value of the Philos-type oscillation criteria, which guarantees that all unbounded solutions oscillate, is greater than θ4(t1, T). The results of Theorem 3.5 and Remark 3.6 are novel. Finally, we offer four examples to illustrate our results.
期刊介绍:
Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981.
The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.