{"title":"使用智能攻击图模型检测和缓解物联网网络中的攻击,以便取证","authors":"Sonam Bhardwaj, Mayank Dave","doi":"10.1007/s11235-024-01105-w","DOIUrl":null,"url":null,"abstract":"<p>This article focuses on the urgent cybersecurity concerns in the Internet of Things (IoT) environment, highlighting the crucial importance of protecting these networks in the face of increasing amounts of IoT data. The paper explores the intricacies of deploying security mechanisms for Internet of Things (IoT) devices, specifically those that are restricted by limited resources. This study examines the inherent weaknesses in IoT systems and analyses the strategies used by malicious individuals to gain control and privileges. In order to tackle these difficulties, the study suggests a sophisticated security system that combines artificial intelligence and an intelligent attack graph. An outstanding characteristic of the model incorporates a method devised to restrain virus spread and accelerate network restoration by introducing virtual nodes. The research showcases the results of the vulnerable attack path predictor (VAPP) module of the proposed model, emphasising its exceptional accuracy in distinguishing between black (0) and red (1) attack paths compared to alternative Machine Learning techniques. Moreover, a thorough evaluation of the module's performance is carried out, with a specific emphasis on security concerns and predictive capacities. Proverif is utilised to validate the security settings and evaluate the resilience of the secret keys. The findings demonstrate a detection rate of 98.48% and an authentication rate of 85%, outperforming the achievements of earlier studies. The contributions greatly enhance the ability of IoT networks to withstand challenges, and the use of cryptographic verification confirms its dependability in the ever-changing digital environment.</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":"35 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attack detection and mitigation using Intelligent attack graph model for Forensic in IoT Networks\",\"authors\":\"Sonam Bhardwaj, Mayank Dave\",\"doi\":\"10.1007/s11235-024-01105-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article focuses on the urgent cybersecurity concerns in the Internet of Things (IoT) environment, highlighting the crucial importance of protecting these networks in the face of increasing amounts of IoT data. The paper explores the intricacies of deploying security mechanisms for Internet of Things (IoT) devices, specifically those that are restricted by limited resources. This study examines the inherent weaknesses in IoT systems and analyses the strategies used by malicious individuals to gain control and privileges. In order to tackle these difficulties, the study suggests a sophisticated security system that combines artificial intelligence and an intelligent attack graph. An outstanding characteristic of the model incorporates a method devised to restrain virus spread and accelerate network restoration by introducing virtual nodes. The research showcases the results of the vulnerable attack path predictor (VAPP) module of the proposed model, emphasising its exceptional accuracy in distinguishing between black (0) and red (1) attack paths compared to alternative Machine Learning techniques. Moreover, a thorough evaluation of the module's performance is carried out, with a specific emphasis on security concerns and predictive capacities. Proverif is utilised to validate the security settings and evaluate the resilience of the secret keys. The findings demonstrate a detection rate of 98.48% and an authentication rate of 85%, outperforming the achievements of earlier studies. The contributions greatly enhance the ability of IoT networks to withstand challenges, and the use of cryptographic verification confirms its dependability in the ever-changing digital environment.</p>\",\"PeriodicalId\":51194,\"journal\":{\"name\":\"Telecommunication Systems\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telecommunication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11235-024-01105-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-024-01105-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Attack detection and mitigation using Intelligent attack graph model for Forensic in IoT Networks
This article focuses on the urgent cybersecurity concerns in the Internet of Things (IoT) environment, highlighting the crucial importance of protecting these networks in the face of increasing amounts of IoT data. The paper explores the intricacies of deploying security mechanisms for Internet of Things (IoT) devices, specifically those that are restricted by limited resources. This study examines the inherent weaknesses in IoT systems and analyses the strategies used by malicious individuals to gain control and privileges. In order to tackle these difficulties, the study suggests a sophisticated security system that combines artificial intelligence and an intelligent attack graph. An outstanding characteristic of the model incorporates a method devised to restrain virus spread and accelerate network restoration by introducing virtual nodes. The research showcases the results of the vulnerable attack path predictor (VAPP) module of the proposed model, emphasising its exceptional accuracy in distinguishing between black (0) and red (1) attack paths compared to alternative Machine Learning techniques. Moreover, a thorough evaluation of the module's performance is carried out, with a specific emphasis on security concerns and predictive capacities. Proverif is utilised to validate the security settings and evaluate the resilience of the secret keys. The findings demonstrate a detection rate of 98.48% and an authentication rate of 85%, outperforming the achievements of earlier studies. The contributions greatly enhance the ability of IoT networks to withstand challenges, and the use of cryptographic verification confirms its dependability in the ever-changing digital environment.
期刊介绍:
Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering:
Performance Evaluation of Wide Area and Local Networks;
Network Interconnection;
Wire, wireless, Adhoc, mobile networks;
Impact of New Services (economic and organizational impact);
Fiberoptics and photonic switching;
DSL, ADSL, cable TV and their impact;
Design and Analysis Issues in Metropolitan Area Networks;
Networking Protocols;
Dynamics and Capacity Expansion of Telecommunication Systems;
Multimedia Based Systems, Their Design Configuration and Impact;
Configuration of Distributed Systems;
Pricing for Networking and Telecommunication Services;
Performance Analysis of Local Area Networks;
Distributed Group Decision Support Systems;
Configuring Telecommunication Systems with Reliability and Availability;
Cost Benefit Analysis and Economic Impact of Telecommunication Systems;
Standardization and Regulatory Issues;
Security, Privacy and Encryption in Telecommunication Systems;
Cellular, Mobile and Satellite Based Systems.