Le Deng, Matt Golding, Roger Lentle, Alastair MacGibbon, Lara Matia-Merino
{"title":"利用模拟新生儿胃系统研究胃脂肪酶和胃蛋白酶在消化婴儿配方粉脂质中的作用","authors":"Le Deng, Matt Golding, Roger Lentle, Alastair MacGibbon, Lara Matia-Merino","doi":"10.1007/s11483-023-09825-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study has sought to determine the impact of interfacial dynamics on the <i>in vitro</i> lipid digestion of a commercial infant formula; in particular, the specific role of interfacial proteolysis on the subsequent rates of reaction of droplet lipolysis. A powder infant formula was used as the as a protein-stabilised emulsion substrate during simulated infant gastric digestion at different <i>p</i>H level 3.5, 4.5 and 5.5. The digestate was treated with a fungal lipase and porcine pepsin (used to analogue human gastric lipase and pepsin) respectively and in a combined action. The study found that for fungal lipase treated digestate, the rate and extent of lipolysis were observed to be maxim at <i>p</i>H 5.5, in accordance with the optimal pH activity of the lipase. Findings also indicated that the proteinaceous interface did not appear to act as a barrier to lipolysis, since treatment with lipase and pepsin did not result in any significant increase in extent of lipolysis. However, it was observed that surface proteolysis did lead to alteration of the structural fate of the enzyme during digestion when compared to when the emulsion was digested solely by lipase. Findings suggest that lipolysis under these conditions may be independent of the structural dynamics of the emulsion during digestion, as observed within the context of this study design.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 2","pages":"369 - 385"},"PeriodicalIF":2.8000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11483-023-09825-3.pdf","citationCount":"0","resultStr":"{\"title\":\"The Role of Gastric Lipase and Pepsin in Lipid Digestion of a Powder Infant Formula Using a Simulated Neonatal Gastric System\",\"authors\":\"Le Deng, Matt Golding, Roger Lentle, Alastair MacGibbon, Lara Matia-Merino\",\"doi\":\"10.1007/s11483-023-09825-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study has sought to determine the impact of interfacial dynamics on the <i>in vitro</i> lipid digestion of a commercial infant formula; in particular, the specific role of interfacial proteolysis on the subsequent rates of reaction of droplet lipolysis. A powder infant formula was used as the as a protein-stabilised emulsion substrate during simulated infant gastric digestion at different <i>p</i>H level 3.5, 4.5 and 5.5. The digestate was treated with a fungal lipase and porcine pepsin (used to analogue human gastric lipase and pepsin) respectively and in a combined action. The study found that for fungal lipase treated digestate, the rate and extent of lipolysis were observed to be maxim at <i>p</i>H 5.5, in accordance with the optimal pH activity of the lipase. Findings also indicated that the proteinaceous interface did not appear to act as a barrier to lipolysis, since treatment with lipase and pepsin did not result in any significant increase in extent of lipolysis. However, it was observed that surface proteolysis did lead to alteration of the structural fate of the enzyme during digestion when compared to when the emulsion was digested solely by lipase. Findings suggest that lipolysis under these conditions may be independent of the structural dynamics of the emulsion during digestion, as observed within the context of this study design.</p></div>\",\"PeriodicalId\":564,\"journal\":{\"name\":\"Food Biophysics\",\"volume\":\"19 2\",\"pages\":\"369 - 385\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11483-023-09825-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Biophysics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11483-023-09825-3\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-023-09825-3","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The Role of Gastric Lipase and Pepsin in Lipid Digestion of a Powder Infant Formula Using a Simulated Neonatal Gastric System
This study has sought to determine the impact of interfacial dynamics on the in vitro lipid digestion of a commercial infant formula; in particular, the specific role of interfacial proteolysis on the subsequent rates of reaction of droplet lipolysis. A powder infant formula was used as the as a protein-stabilised emulsion substrate during simulated infant gastric digestion at different pH level 3.5, 4.5 and 5.5. The digestate was treated with a fungal lipase and porcine pepsin (used to analogue human gastric lipase and pepsin) respectively and in a combined action. The study found that for fungal lipase treated digestate, the rate and extent of lipolysis were observed to be maxim at pH 5.5, in accordance with the optimal pH activity of the lipase. Findings also indicated that the proteinaceous interface did not appear to act as a barrier to lipolysis, since treatment with lipase and pepsin did not result in any significant increase in extent of lipolysis. However, it was observed that surface proteolysis did lead to alteration of the structural fate of the enzyme during digestion when compared to when the emulsion was digested solely by lipase. Findings suggest that lipolysis under these conditions may be independent of the structural dynamics of the emulsion during digestion, as observed within the context of this study design.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.