Marko Sarstedt, Susanne J. Adler, Lea Rau, Bernd Schmitt
{"title":"在消费者和营销研究中使用大型语言模型生成硅样本:挑战、机遇和指导原则","authors":"Marko Sarstedt, Susanne J. Adler, Lea Rau, Bernd Schmitt","doi":"10.1002/mar.21982","DOIUrl":null,"url":null,"abstract":"Should consumer researchers employ silicon samples and artificially generated data based on large language models, such as GPT, to mimic human respondents' behavior? In this paper, we review recent research that has compared result patterns from silicon and human samples, finding that results vary considerably across different domains. Based on these results, we present specific recommendations for silicon sample use in consumer and marketing research. We argue that silicon samples hold particular promise in upstream parts of the research process such as qualitative pretesting and pilot studies, where researchers collect external information to safeguard follow-up design choices. We also provide a critical assessment and recommendations for using silicon samples in main studies. Finally, we discuss ethical issues of silicon sample use and present future research avenues.","PeriodicalId":501349,"journal":{"name":"Psychology and Marketing","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using large language models to generate silicon samples in consumer and marketing research: Challenges, opportunities, and guidelines\",\"authors\":\"Marko Sarstedt, Susanne J. Adler, Lea Rau, Bernd Schmitt\",\"doi\":\"10.1002/mar.21982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Should consumer researchers employ silicon samples and artificially generated data based on large language models, such as GPT, to mimic human respondents' behavior? In this paper, we review recent research that has compared result patterns from silicon and human samples, finding that results vary considerably across different domains. Based on these results, we present specific recommendations for silicon sample use in consumer and marketing research. We argue that silicon samples hold particular promise in upstream parts of the research process such as qualitative pretesting and pilot studies, where researchers collect external information to safeguard follow-up design choices. We also provide a critical assessment and recommendations for using silicon samples in main studies. Finally, we discuss ethical issues of silicon sample use and present future research avenues.\",\"PeriodicalId\":501349,\"journal\":{\"name\":\"Psychology and Marketing\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychology and Marketing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/mar.21982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychology and Marketing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mar.21982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using large language models to generate silicon samples in consumer and marketing research: Challenges, opportunities, and guidelines
Should consumer researchers employ silicon samples and artificially generated data based on large language models, such as GPT, to mimic human respondents' behavior? In this paper, we review recent research that has compared result patterns from silicon and human samples, finding that results vary considerably across different domains. Based on these results, we present specific recommendations for silicon sample use in consumer and marketing research. We argue that silicon samples hold particular promise in upstream parts of the research process such as qualitative pretesting and pilot studies, where researchers collect external information to safeguard follow-up design choices. We also provide a critical assessment and recommendations for using silicon samples in main studies. Finally, we discuss ethical issues of silicon sample use and present future research avenues.