土耳其 Kiraz-İzmir 金属矿床附近灌溉水的水文地质化学调查:了解 "地质学与食品安全 "之间的重要联系

IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Clean-soil Air Water Pub Date : 2024-02-09 DOI:10.1002/clen.202300195
Melis Somay-Altas
{"title":"土耳其 Kiraz-İzmir 金属矿床附近灌溉水的水文地质化学调查:了解 \"地质学与食品安全 \"之间的重要联系","authors":"Melis Somay-Altas","doi":"10.1002/clen.202300195","DOIUrl":null,"url":null,"abstract":"<p>The increasing drought due to climate change poses a threat to issues such as safe and accessible drinking water, food safety, and protection from diseases. The provision of water supply is vital for agricultural and livestock activities, which are commonly practiced around natural ore deposits. Examining traditional “irrigation water quality” methods alone is insufficient; investigating potentially toxic metal content in the region's waters is vital, especially around metallic ore deposits. This study focused on the Kiraz district in Turkey, known for its agricultural activities, to assess the impact of geogenic water pollution on irrigation water quality and its implications for food safety and human health. Geology determines nutrient availability, water resources, and land suitability for agriculture. Conventional irrigation water quality parameters indicate groundwater suitability for irrigation in the study area, considering Na%, sodium adsorption ratio, residual sodium carbonate, permeability index, Kelly ratio, magnesium hazard, and potential salinity. However, when examining the potential toxic metal content in the region, it was determined that the values of Al ranged from 96 to 8676 ppb, Ni values ranged from 27 to 360 ppb, and Sb concentrations varied between 9 and 53 432 ppb. Utilizing geogenically contaminated water for irrigation and its indiscriminate use in livestock, dairy, and food industries can lead to foodborne illnesses (cancer, endocrine disruptors, tuberculosis, antimony spots, thyroid tumors, goiter, neurologic and cardiovascular diseases) that endanger human health. The use of low-quality water throughout the agricultural sector and food production chain increases food safety risks.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clen.202300195","citationCount":"0","resultStr":"{\"title\":\"Hydrogeochemical investigation of irrigation water in the vicinity of metallic ore deposits in Kiraz-İzmir, Turkey: Understanding the crucial nexus between “geology and food safety”\",\"authors\":\"Melis Somay-Altas\",\"doi\":\"10.1002/clen.202300195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The increasing drought due to climate change poses a threat to issues such as safe and accessible drinking water, food safety, and protection from diseases. The provision of water supply is vital for agricultural and livestock activities, which are commonly practiced around natural ore deposits. Examining traditional “irrigation water quality” methods alone is insufficient; investigating potentially toxic metal content in the region's waters is vital, especially around metallic ore deposits. This study focused on the Kiraz district in Turkey, known for its agricultural activities, to assess the impact of geogenic water pollution on irrigation water quality and its implications for food safety and human health. Geology determines nutrient availability, water resources, and land suitability for agriculture. Conventional irrigation water quality parameters indicate groundwater suitability for irrigation in the study area, considering Na%, sodium adsorption ratio, residual sodium carbonate, permeability index, Kelly ratio, magnesium hazard, and potential salinity. However, when examining the potential toxic metal content in the region, it was determined that the values of Al ranged from 96 to 8676 ppb, Ni values ranged from 27 to 360 ppb, and Sb concentrations varied between 9 and 53 432 ppb. Utilizing geogenically contaminated water for irrigation and its indiscriminate use in livestock, dairy, and food industries can lead to foodborne illnesses (cancer, endocrine disruptors, tuberculosis, antimony spots, thyroid tumors, goiter, neurologic and cardiovascular diseases) that endanger human health. The use of low-quality water throughout the agricultural sector and food production chain increases food safety risks.</p>\",\"PeriodicalId\":10306,\"journal\":{\"name\":\"Clean-soil Air Water\",\"volume\":\"52 3\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clen.202300195\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clean-soil Air Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300195\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300195","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

气候变化导致干旱加剧,对安全和可获得的饮用水、食品安全和疾病防护等问题构成威胁。供水对农牧业活动至关重要,而农牧业活动通常在天然矿床周围进行。仅研究传统的 "灌溉水质 "方法是不够的;调查该地区水体中潜在的有毒金属含量至关重要,尤其是在金属矿床周围。本研究以土耳其以农业活动著称的基拉兹地区为重点,评估地质水污染对灌溉水质的影响及其对食品安全和人类健康的影响。地质决定了养分的可用性、水资源和土地对农业的适宜性。传统的灌溉水水质参数表明研究地区的地下水适合灌溉,包括 Na%、钠吸附比、残留碳酸钠、渗透指数、凯利比、镁危害和潜在盐度。然而,在研究该地区潜在的有毒金属含量时,发现 Al 值介于 96 至 8676 ppb 之间,Ni 值介于 27 至 360 ppb 之间,Sb 浓度介于 9 至 53 432 ppb 之间。利用受地质污染的水进行灌溉,以及在畜牧业、奶制品业和食品工业中滥用这些水,会导致食源性疾病(癌症、内分泌干扰素、结核病、锑斑、甲状腺肿瘤、甲状腺肿、神经和心血管疾病),危害人类健康。在整个农业部门和食品生产链中使用劣质水会增加食品安全风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrogeochemical investigation of irrigation water in the vicinity of metallic ore deposits in Kiraz-İzmir, Turkey: Understanding the crucial nexus between “geology and food safety”

The increasing drought due to climate change poses a threat to issues such as safe and accessible drinking water, food safety, and protection from diseases. The provision of water supply is vital for agricultural and livestock activities, which are commonly practiced around natural ore deposits. Examining traditional “irrigation water quality” methods alone is insufficient; investigating potentially toxic metal content in the region's waters is vital, especially around metallic ore deposits. This study focused on the Kiraz district in Turkey, known for its agricultural activities, to assess the impact of geogenic water pollution on irrigation water quality and its implications for food safety and human health. Geology determines nutrient availability, water resources, and land suitability for agriculture. Conventional irrigation water quality parameters indicate groundwater suitability for irrigation in the study area, considering Na%, sodium adsorption ratio, residual sodium carbonate, permeability index, Kelly ratio, magnesium hazard, and potential salinity. However, when examining the potential toxic metal content in the region, it was determined that the values of Al ranged from 96 to 8676 ppb, Ni values ranged from 27 to 360 ppb, and Sb concentrations varied between 9 and 53 432 ppb. Utilizing geogenically contaminated water for irrigation and its indiscriminate use in livestock, dairy, and food industries can lead to foodborne illnesses (cancer, endocrine disruptors, tuberculosis, antimony spots, thyroid tumors, goiter, neurologic and cardiovascular diseases) that endanger human health. The use of low-quality water throughout the agricultural sector and food production chain increases food safety risks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clean-soil Air Water
Clean-soil Air Water 环境科学-海洋与淡水生物学
CiteScore
2.80
自引率
5.90%
发文量
88
审稿时长
3.6 months
期刊介绍: CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications. Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.
期刊最新文献
Issue Information: Clean Soil Air Water. 11/2024 Effect of Intercropping Soybean on the Diversity of the Rhizosphere Soil Arbuscular Mycorrhizal Fungi Communities in Wheat Field Short-Term Benefits of Tillage and Agronomic Biofortification for Soybean–Wheat Cropping in Central India Issue Information: Clean Soil Air Water. 10/2024 Geochemical Interaction and Bioavailability of Zinc in Soil Under Long-Term Integrated Nutrient Management in Pearl Millet–Wheat System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1