K. Chakraborty, S. Saroha, S. S. Sinha, S. Lakshmipathy
{"title":"基于 OpenFOAM 的各种壁面处理策略评估,用于模拟流经崖体的分离流和热传导","authors":"K. Chakraborty, S. Saroha, S. S. Sinha, S. Lakshmipathy","doi":"10.1134/S0869864323050049","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of wall treatment on the performance of <i>k-ε</i> model in incompressible, turbulent, separated flows with and without heat transfer has been evaluated in this study. We have simulated two benchmark cases: (i) flow past a circular cylinder at Re = 3900, and (ii) flow past a heated square cylinder at Re = 21 400 using the open source CFD package: OpenFOAM. We have compared three variants of the <i>k-ε</i> model, namely, Launder-Sharma <i>k-ε</i> model (Yap corrected) (LSKEY), Lam–Bremhorst <i>k-ε</i> model (Yap corrected) (LBKEY) and two-layer <i>k-ε</i> model (TLKE) along with the available experimental and direct numerical simulation (DNS) data. Comparisons are made in terms of the models’ capability to predict the mean flow variables, surface integral quantities, and heat transfer characteristics at different wake locations. On the basis of the presented study, we conclude that LSKEY performs better than the other models in predicting the wake and surface flow and heat transfer parameters. Further our comparisons show that, while LSKEY and LBKEY require comparable clock time per flow-through cycle, the computational time needed by TLKE is almost twice as compared to LBKEY or LSKEY. These results call for more attention from the CFD community onto the LSKEY model, in particular, so that it can be incorporated in various other flow fields, especially the scale resolving methodologies like the partially-averaged Navier-Stokes (PANS) equations, wherein a superior wall treatment along with a shorter computational time could be of immense advantage. In authors’ opinion, these benefits of the LSKEY model have largely been overlooked, perhaps because of a biased preference to the TLKE model, which enjoys the default presence in popular commercial CFD packages.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An OpenFOAM-based evaluation of various wall treatment strategies in simulating separated flows past bluff bodies with heat transfer\",\"authors\":\"K. Chakraborty, S. Saroha, S. S. Sinha, S. Lakshmipathy\",\"doi\":\"10.1134/S0869864323050049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effect of wall treatment on the performance of <i>k-ε</i> model in incompressible, turbulent, separated flows with and without heat transfer has been evaluated in this study. We have simulated two benchmark cases: (i) flow past a circular cylinder at Re = 3900, and (ii) flow past a heated square cylinder at Re = 21 400 using the open source CFD package: OpenFOAM. We have compared three variants of the <i>k-ε</i> model, namely, Launder-Sharma <i>k-ε</i> model (Yap corrected) (LSKEY), Lam–Bremhorst <i>k-ε</i> model (Yap corrected) (LBKEY) and two-layer <i>k-ε</i> model (TLKE) along with the available experimental and direct numerical simulation (DNS) data. Comparisons are made in terms of the models’ capability to predict the mean flow variables, surface integral quantities, and heat transfer characteristics at different wake locations. On the basis of the presented study, we conclude that LSKEY performs better than the other models in predicting the wake and surface flow and heat transfer parameters. Further our comparisons show that, while LSKEY and LBKEY require comparable clock time per flow-through cycle, the computational time needed by TLKE is almost twice as compared to LBKEY or LSKEY. These results call for more attention from the CFD community onto the LSKEY model, in particular, so that it can be incorporated in various other flow fields, especially the scale resolving methodologies like the partially-averaged Navier-Stokes (PANS) equations, wherein a superior wall treatment along with a shorter computational time could be of immense advantage. In authors’ opinion, these benefits of the LSKEY model have largely been overlooked, perhaps because of a biased preference to the TLKE model, which enjoys the default presence in popular commercial CFD packages.</p></div>\",\"PeriodicalId\":800,\"journal\":{\"name\":\"Thermophysics and Aeromechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermophysics and Aeromechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0869864323050049\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864323050049","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
An OpenFOAM-based evaluation of various wall treatment strategies in simulating separated flows past bluff bodies with heat transfer
The effect of wall treatment on the performance of k-ε model in incompressible, turbulent, separated flows with and without heat transfer has been evaluated in this study. We have simulated two benchmark cases: (i) flow past a circular cylinder at Re = 3900, and (ii) flow past a heated square cylinder at Re = 21 400 using the open source CFD package: OpenFOAM. We have compared three variants of the k-ε model, namely, Launder-Sharma k-ε model (Yap corrected) (LSKEY), Lam–Bremhorst k-ε model (Yap corrected) (LBKEY) and two-layer k-ε model (TLKE) along with the available experimental and direct numerical simulation (DNS) data. Comparisons are made in terms of the models’ capability to predict the mean flow variables, surface integral quantities, and heat transfer characteristics at different wake locations. On the basis of the presented study, we conclude that LSKEY performs better than the other models in predicting the wake and surface flow and heat transfer parameters. Further our comparisons show that, while LSKEY and LBKEY require comparable clock time per flow-through cycle, the computational time needed by TLKE is almost twice as compared to LBKEY or LSKEY. These results call for more attention from the CFD community onto the LSKEY model, in particular, so that it can be incorporated in various other flow fields, especially the scale resolving methodologies like the partially-averaged Navier-Stokes (PANS) equations, wherein a superior wall treatment along with a shorter computational time could be of immense advantage. In authors’ opinion, these benefits of the LSKEY model have largely been overlooked, perhaps because of a biased preference to the TLKE model, which enjoys the default presence in popular commercial CFD packages.
期刊介绍:
The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.