Yuval RAMOT, Noam KRONFELD, Michal STEINER, Nora Nseir MANASSA, Amir BAHAR, Abraham NYSKA
{"title":"兔硬脑膜切口模型中神经组织对合成硬脑膜移植物植入的耐受性","authors":"Yuval RAMOT, Noam KRONFELD, Michal STEINER, Nora Nseir MANASSA, Amir BAHAR, Abraham NYSKA","doi":"10.1293/tox.2023-0121","DOIUrl":null,"url":null,"abstract":"</p><p>In neurosurgical interventions, effective closure of the dura mater is essential to prevent cerebrospinal fluid leakage and minimize post-operative complications. Biodegradable synthetic materials have the potential to be used as dura mater grafts owing to their regenerative properties and low immunogenicity. This study evaluated the safety of ArtiFascia, a synthetic dura mater graft composed of poly(l-lactic-co-caprolactone acid) and poly(d-lactic-co-caprolactone acid), in a rabbit durotomy model. Previously, ArtiFascia demonstrated positive local tolerance and biodegradability in a 12-month preclinical trial. Here, specialized stains were used to evaluate potential brain damage associated with ArtiFascia use. Histochemical and immunohistochemical assessments included Luxol Fast Blue, cresyl Violet, Masson’s Trichrome, neuronal nuclei,, Glial Fibrillary Acidic Protein, and ionized calcium-binding adaptor molecule 1 stains. The stained slides were graded based on the brain-specific reactions. The results showed no damage to the underlying brain tissue for either the ArtiFascia or control implants. Neither inflammation nor neuronal loss was evident, corroborating the safety of the ArtiFascia. This approach, combined with previous histopathological analyses, strengthens the safety profile of ArtiFascia and sets a benchmark for biodegradable material assessment in dura graft applications. This study aligns with the Food and Drug Administration guidelines and offers a comprehensive evaluation of the potential neural tissue effects of synthetic dura mater grafts.</p>\n<p></p>","PeriodicalId":17437,"journal":{"name":"Journal of Toxicologic Pathology","volume":"189 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural tissue tolerance to synthetic dural mater graft implantation in a rabbit durotomy model\",\"authors\":\"Yuval RAMOT, Noam KRONFELD, Michal STEINER, Nora Nseir MANASSA, Amir BAHAR, Abraham NYSKA\",\"doi\":\"10.1293/tox.2023-0121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>In neurosurgical interventions, effective closure of the dura mater is essential to prevent cerebrospinal fluid leakage and minimize post-operative complications. Biodegradable synthetic materials have the potential to be used as dura mater grafts owing to their regenerative properties and low immunogenicity. This study evaluated the safety of ArtiFascia, a synthetic dura mater graft composed of poly(l-lactic-co-caprolactone acid) and poly(d-lactic-co-caprolactone acid), in a rabbit durotomy model. Previously, ArtiFascia demonstrated positive local tolerance and biodegradability in a 12-month preclinical trial. Here, specialized stains were used to evaluate potential brain damage associated with ArtiFascia use. Histochemical and immunohistochemical assessments included Luxol Fast Blue, cresyl Violet, Masson’s Trichrome, neuronal nuclei,, Glial Fibrillary Acidic Protein, and ionized calcium-binding adaptor molecule 1 stains. The stained slides were graded based on the brain-specific reactions. The results showed no damage to the underlying brain tissue for either the ArtiFascia or control implants. Neither inflammation nor neuronal loss was evident, corroborating the safety of the ArtiFascia. This approach, combined with previous histopathological analyses, strengthens the safety profile of ArtiFascia and sets a benchmark for biodegradable material assessment in dura graft applications. This study aligns with the Food and Drug Administration guidelines and offers a comprehensive evaluation of the potential neural tissue effects of synthetic dura mater grafts.</p>\\n<p></p>\",\"PeriodicalId\":17437,\"journal\":{\"name\":\"Journal of Toxicologic Pathology\",\"volume\":\"189 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicologic Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1293/tox.2023-0121\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicologic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1293/tox.2023-0121","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PATHOLOGY","Score":null,"Total":0}
Neural tissue tolerance to synthetic dural mater graft implantation in a rabbit durotomy model
In neurosurgical interventions, effective closure of the dura mater is essential to prevent cerebrospinal fluid leakage and minimize post-operative complications. Biodegradable synthetic materials have the potential to be used as dura mater grafts owing to their regenerative properties and low immunogenicity. This study evaluated the safety of ArtiFascia, a synthetic dura mater graft composed of poly(l-lactic-co-caprolactone acid) and poly(d-lactic-co-caprolactone acid), in a rabbit durotomy model. Previously, ArtiFascia demonstrated positive local tolerance and biodegradability in a 12-month preclinical trial. Here, specialized stains were used to evaluate potential brain damage associated with ArtiFascia use. Histochemical and immunohistochemical assessments included Luxol Fast Blue, cresyl Violet, Masson’s Trichrome, neuronal nuclei,, Glial Fibrillary Acidic Protein, and ionized calcium-binding adaptor molecule 1 stains. The stained slides were graded based on the brain-specific reactions. The results showed no damage to the underlying brain tissue for either the ArtiFascia or control implants. Neither inflammation nor neuronal loss was evident, corroborating the safety of the ArtiFascia. This approach, combined with previous histopathological analyses, strengthens the safety profile of ArtiFascia and sets a benchmark for biodegradable material assessment in dura graft applications. This study aligns with the Food and Drug Administration guidelines and offers a comprehensive evaluation of the potential neural tissue effects of synthetic dura mater grafts.
期刊介绍:
JTP is a scientific journal that publishes original studies in the field of toxicological pathology and in a wide variety of other related fields. The main scope of the journal is listed below.
Administrative Opinions of Policymakers and Regulatory Agencies
Adverse Events
Carcinogenesis
Data of A Predominantly Negative Nature
Drug-Induced Hematologic Toxicity
Embryological Pathology
High Throughput Pathology
Historical Data of Experimental Animals
Immunohistochemical Analysis
Molecular Pathology
Nomenclature of Lesions
Non-mammal Toxicity Study
Result or Lesion Induced by Chemicals of Which Names Hidden on Account of the Authors
Technology and Methodology Related to Toxicological Pathology
Tumor Pathology; Neoplasia and Hyperplasia
Ultrastructural Analysis
Use of Animal Models.