利用卷积神经网络模型改进 GK2A 晴空大气运动矢量的潜力

IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2024-02-08 DOI:10.1007/s13143-023-00349-x
Hwayon Choi, Yong-Sang Choi, Hyo-Jong Song, Hyoji Kang, Gyuyeon Kim
{"title":"利用卷积神经网络模型改进 GK2A 晴空大气运动矢量的潜力","authors":"Hwayon Choi,&nbsp;Yong-Sang Choi,&nbsp;Hyo-Jong Song,&nbsp;Hyoji Kang,&nbsp;Gyuyeon Kim","doi":"10.1007/s13143-023-00349-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we propose a new approach to improve the accuracy of the horizontal atmospheric motion vector (AMV) in cloud-free skies and its forecasting. We adapted the optical flow of the convolutional neural network (CNN) framework model using two 10-min interval infrared images at water vapor channels (centered at 6.3, 7.0, and 7.3 <span>\\(\\mu m\\)</span>) from the Korean geostationary satellite GEO-KOMPSAT-2A (GK2A). Since all pixels had seamless AMVs calculated by CNN (CNN AMVs), we could also predict AMVs using the linear regression method. The tracking performance of the CNN-based algorithm was validated using AMVs retrieved from GK2A (GK2A AMVs) by estimating the difference between those values and the ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis v5 (ERA5) wind data over Korea in 2022. CNN AMVs showed similar or better root-mean-square vector differences (RMSVDs) than GK2A AMVs (12.33–12.86 vs. 15.89–19.96 m/s). The RMSVDs of the forecasted AMVs were 2.74, 2.95, 3.41, and 4.79 m/s at lead times of 10, 20, 30, and 60 min, respectively. Consequently, our method showed higher accuracy for tracking motion in the production of AMVs and succeeded in forecasting AMVs. We expect that such potential improvements in computational accuracy for operational GK2A AMVs will contribute to increased accuracy when forecasting meteorological phenomena related to wind.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 3","pages":"245 - 253"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-023-00349-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Potential Improvement of GK2A Clear-Sky Atmospheric Motion Vectors Using the Convolutional Neural Network Model\",\"authors\":\"Hwayon Choi,&nbsp;Yong-Sang Choi,&nbsp;Hyo-Jong Song,&nbsp;Hyoji Kang,&nbsp;Gyuyeon Kim\",\"doi\":\"10.1007/s13143-023-00349-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we propose a new approach to improve the accuracy of the horizontal atmospheric motion vector (AMV) in cloud-free skies and its forecasting. We adapted the optical flow of the convolutional neural network (CNN) framework model using two 10-min interval infrared images at water vapor channels (centered at 6.3, 7.0, and 7.3 <span>\\\\(\\\\mu m\\\\)</span>) from the Korean geostationary satellite GEO-KOMPSAT-2A (GK2A). Since all pixels had seamless AMVs calculated by CNN (CNN AMVs), we could also predict AMVs using the linear regression method. The tracking performance of the CNN-based algorithm was validated using AMVs retrieved from GK2A (GK2A AMVs) by estimating the difference between those values and the ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis v5 (ERA5) wind data over Korea in 2022. CNN AMVs showed similar or better root-mean-square vector differences (RMSVDs) than GK2A AMVs (12.33–12.86 vs. 15.89–19.96 m/s). The RMSVDs of the forecasted AMVs were 2.74, 2.95, 3.41, and 4.79 m/s at lead times of 10, 20, 30, and 60 min, respectively. Consequently, our method showed higher accuracy for tracking motion in the production of AMVs and succeeded in forecasting AMVs. We expect that such potential improvements in computational accuracy for operational GK2A AMVs will contribute to increased accuracy when forecasting meteorological phenomena related to wind.</p></div>\",\"PeriodicalId\":8556,\"journal\":{\"name\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"volume\":\"60 3\",\"pages\":\"245 - 253\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13143-023-00349-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13143-023-00349-x\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-023-00349-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在本研究中,我们提出了一种新方法来提高无云天空中水平大气运动矢量(AMV)及其预报的精度。我们利用韩国地球静止卫星 GEO-KOMPSAT-2A(GK2A)在水汽通道(以 6.3、7.0 和 7.3 \(\mu m\) 为中心)的两幅 10 分钟间隔的红外图像,对卷积神经网络(CNN)框架模型的光流进行了调整。由于所有像素都有由 CNN 计算出的无缝 AMVs(CNN AMVs),我们还可以使用线性回归方法预测 AMVs。我们使用从 GK2A 获取的 AMVs(GK2A AMVs),通过估算这些值与 2022 年韩国上空的 ECMWF(欧洲中期天气预报中心)再分析 v5(ERA5)风数据之间的差值,验证了基于 CNN 算法的跟踪性能。与 GK2A AMV 相比,CNN AMV 显示出相似或更好的均方根矢量差(RMSVDs)(12.33-12.86 vs. 15.89-19.96 m/s)。在预报时间为 10、20、30 和 60 分钟时,预报 AMV 的均方根向量差分别为 2.74、2.95、3.41 和 4.79 m/s。因此,我们的方法在产生 AMV 的过程中显示出更高的运动跟踪精度,并成功预测了 AMV。我们预计,这种对运行中的 GK2A AMV 计算精度的潜在改进将有助于提高预报与风有关的气象现象的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential Improvement of GK2A Clear-Sky Atmospheric Motion Vectors Using the Convolutional Neural Network Model

In this study, we propose a new approach to improve the accuracy of the horizontal atmospheric motion vector (AMV) in cloud-free skies and its forecasting. We adapted the optical flow of the convolutional neural network (CNN) framework model using two 10-min interval infrared images at water vapor channels (centered at 6.3, 7.0, and 7.3 \(\mu m\)) from the Korean geostationary satellite GEO-KOMPSAT-2A (GK2A). Since all pixels had seamless AMVs calculated by CNN (CNN AMVs), we could also predict AMVs using the linear regression method. The tracking performance of the CNN-based algorithm was validated using AMVs retrieved from GK2A (GK2A AMVs) by estimating the difference between those values and the ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis v5 (ERA5) wind data over Korea in 2022. CNN AMVs showed similar or better root-mean-square vector differences (RMSVDs) than GK2A AMVs (12.33–12.86 vs. 15.89–19.96 m/s). The RMSVDs of the forecasted AMVs were 2.74, 2.95, 3.41, and 4.79 m/s at lead times of 10, 20, 30, and 60 min, respectively. Consequently, our method showed higher accuracy for tracking motion in the production of AMVs and succeeded in forecasting AMVs. We expect that such potential improvements in computational accuracy for operational GK2A AMVs will contribute to increased accuracy when forecasting meteorological phenomena related to wind.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asia-Pacific Journal of Atmospheric Sciences
Asia-Pacific Journal of Atmospheric Sciences 地学-气象与大气科学
CiteScore
5.50
自引率
4.30%
发文量
34
审稿时长
>12 weeks
期刊介绍: The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.
期刊最新文献
Dynamic Variations in Wind Speed Intensity Across China and Their Association with Atmospheric Circulation Patterns Impact of Cloud Vertical Overlap on Cloud Radiative Effect in the Korean Integrated Model (KIM) Seasonal Simulations during Boreal Summer and Winter The Sensitivity of Extreme Rainfall Simulations to WRF Parameters During Two Intense Southwest Monsoon Events in the Philippines Abnormal Climate in 2022 Summer in Korea and Asia Correction to: Effects of Long-term Climate Change on Typhoon Rainfall Associated with Southwesterly Monsoon Flow near Taiwan: Mindulle (2004) and Morakot (2009)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1