实现运行稳定的过氧化物太阳能电池:基础材料、设备设计和商业应用

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Infomat Pub Date : 2024-02-01 DOI:10.1002/inf2.12522
Jianfang Qin, Zhigang Che, Yifei Kang, Chenjing Liu, Dongdong Wu, Haiying Yang, Xiaotian Hu, Yan Zhan
{"title":"实现运行稳定的过氧化物太阳能电池:基础材料、设备设计和商业应用","authors":"Jianfang Qin,&nbsp;Zhigang Che,&nbsp;Yifei Kang,&nbsp;Chenjing Liu,&nbsp;Dongdong Wu,&nbsp;Haiying Yang,&nbsp;Xiaotian Hu,&nbsp;Yan Zhan","doi":"10.1002/inf2.12522","DOIUrl":null,"url":null,"abstract":"<p>Over the last decade, perovskite solar cells (PSCs) have drawn extensive attention owing to their high power conversion efficiency (single junction: 26.1%, perovskite/silicon tandem: 33.9%) and low fabrication cost. However, the short lifespan of PSCs with initial efficiency still blocks their practical applications. This operational instability may originate from the intrinsic and extrinsic degradation of materials or devices. Although the lifetime of PSCs has been prolonged through component, crystal, defect, interface, encapsulation engineering, and so on, the systematic analysis of failure regularity for PSCs from the perspective of materials and devices against multiple operating stressors is indispensable. In this review, we start with elaboration of the predominant degradation pathways and mechanism for PSCs under working stressors. Then the strategies for improving long-term durability with respect to fundamental materials, interface designs, and device encapsulation have been summarized. Meanwhile, the key results have been discussed to understand the limitation of assessing PSCs stability, and the potential applications in indoor photovoltaics and wearable electronics are demonstrated. Finally, promising proposals, encompassing material processing, film formation, interface strengthening, structure designing, and device encapsulation, are provided to improve the operational stability of PSCs and promote their commercialization.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12522","citationCount":"0","resultStr":"{\"title\":\"Towards operation-stabilizing perovskite solar cells: Fundamental materials, device designs, and commercial applications\",\"authors\":\"Jianfang Qin,&nbsp;Zhigang Che,&nbsp;Yifei Kang,&nbsp;Chenjing Liu,&nbsp;Dongdong Wu,&nbsp;Haiying Yang,&nbsp;Xiaotian Hu,&nbsp;Yan Zhan\",\"doi\":\"10.1002/inf2.12522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Over the last decade, perovskite solar cells (PSCs) have drawn extensive attention owing to their high power conversion efficiency (single junction: 26.1%, perovskite/silicon tandem: 33.9%) and low fabrication cost. However, the short lifespan of PSCs with initial efficiency still blocks their practical applications. This operational instability may originate from the intrinsic and extrinsic degradation of materials or devices. Although the lifetime of PSCs has been prolonged through component, crystal, defect, interface, encapsulation engineering, and so on, the systematic analysis of failure regularity for PSCs from the perspective of materials and devices against multiple operating stressors is indispensable. In this review, we start with elaboration of the predominant degradation pathways and mechanism for PSCs under working stressors. Then the strategies for improving long-term durability with respect to fundamental materials, interface designs, and device encapsulation have been summarized. Meanwhile, the key results have been discussed to understand the limitation of assessing PSCs stability, and the potential applications in indoor photovoltaics and wearable electronics are demonstrated. Finally, promising proposals, encompassing material processing, film formation, interface strengthening, structure designing, and device encapsulation, are provided to improve the operational stability of PSCs and promote their commercialization.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":48538,\"journal\":{\"name\":\"Infomat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":22.7000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12522\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infomat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12522\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12522","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在过去十年中,透辉石太阳能电池(PSCs)因其较高的功率转换效率(单结:26.1%,透辉石/硅串联:33.9%)和较低的制造成本而受到广泛关注。然而,具有初始效率的 PSC 使用寿命较短,这仍然阻碍了它们的实际应用。这种运行不稳定性可能源于材料或器件的内在和外在退化。虽然通过元件、晶体、缺陷、界面、封装工程等方法延长了 PSCs 的寿命,但从材料和器件的角度系统分析 PSCs 在多种工作应力下的失效规律性是必不可少的。在本综述中,我们首先阐述了 PSC 在工作应力下的主要降解途径和机制。然后,我们总结了在基础材料、界面设计和器件封装方面提高长期耐久性的策略。同时,讨论了关键结果,以了解评估 PSCs 稳定性的局限性,并展示了其在室内光伏和可穿戴电子设备中的潜在应用。最后,从材料加工、薄膜形成、界面强化、结构设计和器件封装等方面提出了一些有前景的建议,以提高 PSCs 的工作稳定性并促进其商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards operation-stabilizing perovskite solar cells: Fundamental materials, device designs, and commercial applications

Over the last decade, perovskite solar cells (PSCs) have drawn extensive attention owing to their high power conversion efficiency (single junction: 26.1%, perovskite/silicon tandem: 33.9%) and low fabrication cost. However, the short lifespan of PSCs with initial efficiency still blocks their practical applications. This operational instability may originate from the intrinsic and extrinsic degradation of materials or devices. Although the lifetime of PSCs has been prolonged through component, crystal, defect, interface, encapsulation engineering, and so on, the systematic analysis of failure regularity for PSCs from the perspective of materials and devices against multiple operating stressors is indispensable. In this review, we start with elaboration of the predominant degradation pathways and mechanism for PSCs under working stressors. Then the strategies for improving long-term durability with respect to fundamental materials, interface designs, and device encapsulation have been summarized. Meanwhile, the key results have been discussed to understand the limitation of assessing PSCs stability, and the potential applications in indoor photovoltaics and wearable electronics are demonstrated. Finally, promising proposals, encompassing material processing, film formation, interface strengthening, structure designing, and device encapsulation, are provided to improve the operational stability of PSCs and promote their commercialization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
期刊最新文献
Continuous synthesis of metal oxide-supported high-entropy alloy nanoparticles with remarkable durability and catalytic activity in the hydrogen reduction reaction Bifunctional self-segregated electrolyte realizing high-performance zinc-iodine batteries Computing imaging in shortwave infrared bands enabled by MoTe2/Si 2D-3D heterojunction-based photodiode Cover Image Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1