利用纳米氧化金属颗粒改变相变材料的导热性能

Wisanu Phukaokaew, A. Suksri, T. Wongwuttanasatian
{"title":"利用纳米氧化金属颗粒改变相变材料的导热性能","authors":"Wisanu Phukaokaew, A. Suksri, T. Wongwuttanasatian","doi":"10.4028/p-w84kyz","DOIUrl":null,"url":null,"abstract":"The phase change materials (PCM) based cooling system have gained recent popularity with PV module temperature (TPV) reduction. PCM is an effective thermal energy storage material with the activation of latent heat capacity. Its low heat conductivity has been discovered in several studies. In this study, PCM is chosen to mix with nanoparticles to enhance its thermal conductivity and performance. For an ambient temperature of 38, it is suggested that the melting temperature (Tmelt) of PCM should be between 41 and 44 °C. Nanoparticle composited PCM (nc-PCM) are generated by mixing lauric acid (LA) with three different types of nanoparticles, including aluminum oxide (Al2O3), copper oxide (CuO), and magnesium oxide (MgO) in the following proportions: 100:0, 99:1, 98:2, 94:6, 92:8 and 90:10. It has been shown that the melting points (Tmelt) of the studied nc-PCMs are between 41.18 and 42.47 °C and thermal conductivity increases. According to the findings, the best balance between latent heat of fusion and thermal conductivity should be at 6% nanoparticle. Finally, it is expected that employing these three nc-PCM to reduce the PV module's temperature will enhance PV efficiency.","PeriodicalId":507742,"journal":{"name":"Materials Science Forum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Modification of Thermal Conductivity of Phase Change Material Using Nano Metal-Oxide Particles\",\"authors\":\"Wisanu Phukaokaew, A. Suksri, T. Wongwuttanasatian\",\"doi\":\"10.4028/p-w84kyz\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phase change materials (PCM) based cooling system have gained recent popularity with PV module temperature (TPV) reduction. PCM is an effective thermal energy storage material with the activation of latent heat capacity. Its low heat conductivity has been discovered in several studies. In this study, PCM is chosen to mix with nanoparticles to enhance its thermal conductivity and performance. For an ambient temperature of 38, it is suggested that the melting temperature (Tmelt) of PCM should be between 41 and 44 °C. Nanoparticle composited PCM (nc-PCM) are generated by mixing lauric acid (LA) with three different types of nanoparticles, including aluminum oxide (Al2O3), copper oxide (CuO), and magnesium oxide (MgO) in the following proportions: 100:0, 99:1, 98:2, 94:6, 92:8 and 90:10. It has been shown that the melting points (Tmelt) of the studied nc-PCMs are between 41.18 and 42.47 °C and thermal conductivity increases. According to the findings, the best balance between latent heat of fusion and thermal conductivity should be at 6% nanoparticle. Finally, it is expected that employing these three nc-PCM to reduce the PV module's temperature will enhance PV efficiency.\",\"PeriodicalId\":507742,\"journal\":{\"name\":\"Materials Science Forum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-w84kyz\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-w84kyz","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着光伏组件温度(TPV)的降低,基于相变材料(PCM)的冷却系统越来越受欢迎。PCM 是一种有效的热能储存材料,具有激活潜热的能力。多项研究发现,它的热传导率较低。本研究选择将 PCM 与纳米颗粒混合,以提高其热传导率和性能。在环境温度为 38℃的情况下,建议 PCM 的熔化温度(Tmelt)应在 41 至 44 ℃ 之间。纳米颗粒复合 PCM(nc-PCM)是通过将月桂酸(LA)与三种不同类型的纳米颗粒(包括氧化铝 (Al2O3)、氧化铜 (CuO) 和氧化镁 (MgO))按以下比例混合生成的:100:0、99:1、98:2、94:6、92:8 和 90:10。研究结果表明,所研究的 nc-PCM 的熔点(Tmelt)介于 41.18 和 42.47 ℃ 之间,导热系数也随之增加。根据研究结果,熔化潜热和热导率之间的最佳平衡点应为 6% 的纳米粒子。最后,利用这三种 nc-PCM 降低光伏组件的温度有望提高光伏效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Modification of Thermal Conductivity of Phase Change Material Using Nano Metal-Oxide Particles
The phase change materials (PCM) based cooling system have gained recent popularity with PV module temperature (TPV) reduction. PCM is an effective thermal energy storage material with the activation of latent heat capacity. Its low heat conductivity has been discovered in several studies. In this study, PCM is chosen to mix with nanoparticles to enhance its thermal conductivity and performance. For an ambient temperature of 38, it is suggested that the melting temperature (Tmelt) of PCM should be between 41 and 44 °C. Nanoparticle composited PCM (nc-PCM) are generated by mixing lauric acid (LA) with three different types of nanoparticles, including aluminum oxide (Al2O3), copper oxide (CuO), and magnesium oxide (MgO) in the following proportions: 100:0, 99:1, 98:2, 94:6, 92:8 and 90:10. It has been shown that the melting points (Tmelt) of the studied nc-PCMs are between 41.18 and 42.47 °C and thermal conductivity increases. According to the findings, the best balance between latent heat of fusion and thermal conductivity should be at 6% nanoparticle. Finally, it is expected that employing these three nc-PCM to reduce the PV module's temperature will enhance PV efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Wood-Plastic Soil Tray Composite (WPSTC) Using Polymerized Coir-Wood Dust for Green Roof Structures Enhancing Dispersion Ability and Bond Strength of Boron Nitride with Epoxy Resin by Ar+ Ion Beam in Reactive Oxygen Gas Environment Evaluation of the Mechanical Properties of Recycled Coarse Aggregate Concrete against the Action of Fire Effect of Blending Constant Concentration of Acrylic Polymer with Varying Amount of Fly Ash to the Permeability and Strength of Large Aggregate Pervious Concrete Evaluation of the Influence of Brick Dust and Rice Husk Ash on the Mechanical and Physical Behavior of a Geopolymeric and Eco-Efficient Concrete with Partial Cement Replacements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1