Mohamed Njianga Yende, Ghanshyam Singh, G. A. Eyebe, Clément Mbinack, Joseph Mebara Mbida
{"title":"用于 WBAN 应用的植入式菱形环部分内嵌馈电圆极化微带单极天线","authors":"Mohamed Njianga Yende, Ghanshyam Singh, G. A. Eyebe, Clément Mbinack, Joseph Mebara Mbida","doi":"10.1155/2024/2555206","DOIUrl":null,"url":null,"abstract":"In the present article, a design approach to accomplish circular polarization-based rhombus ring microstrip-fed monopole antenna working at 5.8 GHz for wireless body area network (WBAN) applications is proposed. The input impedance calculation using an electromagnetic theory of transmission line in a travelling wave coupled to the parallel-plate inductor model is conducted. Radiated electric field pattern calculation of the conventional square ring microstrip patch antenna (MSPA) using Biot and Savart’s law is reported. The circular polarization of the proposed antenna is accomplished by loading the radiating path with a capacitive element sectioned in the neighbourhood of the feed line. The proposed planar monopole antenna of volume 0.38λ0×0.38λ0×0.029λ0 (λ0 is evaluated at the resonant frequency of 5.8 GHz) achieves a -10 dB impedance bandwidth of 86.20% in the band (3-8 GHz) with a stable real gain of 8.29 dBic in circular polarization at the resonant frequency of 5.8 GHz and axial ration bandwidth of about 32.75% in the (5-6.9 GHz) band. Specific absorption rate (SAR) evaluation of the studied antenna is computed numerically on a part of the human phantom model to justify its use in WBAN applications. It is noted that the maximum amount of radiation absorbed by a part of the human phantom model is limited to a maximum SAR value of 1.45 W/kg and 0.754 W/kg on 1 g and 10 g of tissue mass, respectively. The prospective design has been fabricated and tested, and the experimental results are in good agreement with the simulation outcomes.","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implanted Rhombus Ring Partial Inset-Fed Circularly Polarized Microstrip Monopole Antenna for WBAN Applications\",\"authors\":\"Mohamed Njianga Yende, Ghanshyam Singh, G. A. Eyebe, Clément Mbinack, Joseph Mebara Mbida\",\"doi\":\"10.1155/2024/2555206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present article, a design approach to accomplish circular polarization-based rhombus ring microstrip-fed monopole antenna working at 5.8 GHz for wireless body area network (WBAN) applications is proposed. The input impedance calculation using an electromagnetic theory of transmission line in a travelling wave coupled to the parallel-plate inductor model is conducted. Radiated electric field pattern calculation of the conventional square ring microstrip patch antenna (MSPA) using Biot and Savart’s law is reported. The circular polarization of the proposed antenna is accomplished by loading the radiating path with a capacitive element sectioned in the neighbourhood of the feed line. The proposed planar monopole antenna of volume 0.38λ0×0.38λ0×0.029λ0 (λ0 is evaluated at the resonant frequency of 5.8 GHz) achieves a -10 dB impedance bandwidth of 86.20% in the band (3-8 GHz) with a stable real gain of 8.29 dBic in circular polarization at the resonant frequency of 5.8 GHz and axial ration bandwidth of about 32.75% in the (5-6.9 GHz) band. Specific absorption rate (SAR) evaluation of the studied antenna is computed numerically on a part of the human phantom model to justify its use in WBAN applications. It is noted that the maximum amount of radiation absorbed by a part of the human phantom model is limited to a maximum SAR value of 1.45 W/kg and 0.754 W/kg on 1 g and 10 g of tissue mass, respectively. The prospective design has been fabricated and tested, and the experimental results are in good agreement with the simulation outcomes.\",\"PeriodicalId\":54944,\"journal\":{\"name\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2555206\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/2555206","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种基于圆极化的菱形环微带馈电单极子天线的设计方法,其工作频率为 5.8 GHz,适用于无线体域网(WBAN)应用。利用与平行板电感器模型耦合的行波传输线电磁理论进行了输入阻抗计算。报告还使用 Biot 和 Savart 定律计算了传统方环微带贴片天线(MSPA)的辐射电场模式。通过在辐射路径上加载馈线附近的电容元件,实现了拟议天线的圆极化。拟议的平面单极子天线体积为 0.38λ0×0.38λ0×0.029λ0(λ0 在谐振频率 5.8 GHz 时进行评估),在谐振频率 5.8 GHz 时,在圆极化状态下的-10 dB 阻抗带宽为 86.20%,轴向配比带宽约为 32.75%。所研究天线的比吸收率(SAR)评估是在人体模型的一部分上进行数值计算的,以证明其在 WBAN 应用中的合理性。结果表明,人体模型的一部分吸收的最大辐射量被限制在最大 SAR 值 1.45 W/kg 和 0.754 W/kg,分别为 1 g 和 10 g 组织质量。前瞻性设计已经制作完成并进行了测试,实验结果与模拟结果十分吻合。
Implanted Rhombus Ring Partial Inset-Fed Circularly Polarized Microstrip Monopole Antenna for WBAN Applications
In the present article, a design approach to accomplish circular polarization-based rhombus ring microstrip-fed monopole antenna working at 5.8 GHz for wireless body area network (WBAN) applications is proposed. The input impedance calculation using an electromagnetic theory of transmission line in a travelling wave coupled to the parallel-plate inductor model is conducted. Radiated electric field pattern calculation of the conventional square ring microstrip patch antenna (MSPA) using Biot and Savart’s law is reported. The circular polarization of the proposed antenna is accomplished by loading the radiating path with a capacitive element sectioned in the neighbourhood of the feed line. The proposed planar monopole antenna of volume 0.38λ0×0.38λ0×0.029λ0 (λ0 is evaluated at the resonant frequency of 5.8 GHz) achieves a -10 dB impedance bandwidth of 86.20% in the band (3-8 GHz) with a stable real gain of 8.29 dBic in circular polarization at the resonant frequency of 5.8 GHz and axial ration bandwidth of about 32.75% in the (5-6.9 GHz) band. Specific absorption rate (SAR) evaluation of the studied antenna is computed numerically on a part of the human phantom model to justify its use in WBAN applications. It is noted that the maximum amount of radiation absorbed by a part of the human phantom model is limited to a maximum SAR value of 1.45 W/kg and 0.754 W/kg on 1 g and 10 g of tissue mass, respectively. The prospective design has been fabricated and tested, and the experimental results are in good agreement with the simulation outcomes.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.