{"title":"利用地理信息系统技术和遥感数据,整合多标准决策分析和统计模型,绘制阿尔及尔省(阿尔及利亚)西部滑坡易发区地图","authors":"Safia Mokadem, Ghani Cheikh Lounis, Djamel Machane, Abdeldjalil Goumrasa","doi":"10.1007/s12518-024-00548-9","DOIUrl":null,"url":null,"abstract":"<div><p>Landslide susceptibility assessment and prediction are among the main processing for disaster management and land use planning activities. Therefore, the general purpose of this research was to evaluate GIS-based spatial modeling of landslides in the western Algiers Province using five models, namely, frequency ratio (FR), weights of evidence (WoE), evidential belief function (EBF), logistic regression (LR), and analytical hierarchy process (AHP), and then compare their performances. At first, a landslide inventory map was prepared according to Google Earth satellite images, historical records, and extensive field surveys. The recorded landslides were divided into two groups (70% and 30%) to establish the training and validation models. In the next step, GIS techniques and remote sensing data were used, to prepare a spatial database containing 13 landslide conditioning factors: lithology, distance to lithological boundaries, permeability, slope, exposure, altitude, profile curvature, plan curvature, precipitation, distance to rivers, topographic wetness index, normalized difference vegetation index, and distance to roads. Finally, the landslide susceptibility maps were produced using the five models and validated by the areas under the relative operative characteristic curve (AUC). The AUC results showed a significant improvement in susceptibility map accuracy; the FR model has the best performance in the training and prediction process (90%), followed by LR (88%, 89%), WoE (88%, 87%), EBF (86%,86%), and AHP (76%,75%), respectively. The produced maps in the current study could be useful for land use planning and hazard mitigation purposes in western Algiers Province.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":"16 1","pages":"235 - 280"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of multi-criteria decision analysis and statistical models for landslide susceptibility mapping in the western Algiers Province (Algeria) using GIS techniques and remote sensing data\",\"authors\":\"Safia Mokadem, Ghani Cheikh Lounis, Djamel Machane, Abdeldjalil Goumrasa\",\"doi\":\"10.1007/s12518-024-00548-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Landslide susceptibility assessment and prediction are among the main processing for disaster management and land use planning activities. Therefore, the general purpose of this research was to evaluate GIS-based spatial modeling of landslides in the western Algiers Province using five models, namely, frequency ratio (FR), weights of evidence (WoE), evidential belief function (EBF), logistic regression (LR), and analytical hierarchy process (AHP), and then compare their performances. At first, a landslide inventory map was prepared according to Google Earth satellite images, historical records, and extensive field surveys. The recorded landslides were divided into two groups (70% and 30%) to establish the training and validation models. In the next step, GIS techniques and remote sensing data were used, to prepare a spatial database containing 13 landslide conditioning factors: lithology, distance to lithological boundaries, permeability, slope, exposure, altitude, profile curvature, plan curvature, precipitation, distance to rivers, topographic wetness index, normalized difference vegetation index, and distance to roads. Finally, the landslide susceptibility maps were produced using the five models and validated by the areas under the relative operative characteristic curve (AUC). The AUC results showed a significant improvement in susceptibility map accuracy; the FR model has the best performance in the training and prediction process (90%), followed by LR (88%, 89%), WoE (88%, 87%), EBF (86%,86%), and AHP (76%,75%), respectively. The produced maps in the current study could be useful for land use planning and hazard mitigation purposes in western Algiers Province.</p></div>\",\"PeriodicalId\":46286,\"journal\":{\"name\":\"Applied Geomatics\",\"volume\":\"16 1\",\"pages\":\"235 - 280\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12518-024-00548-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-024-00548-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Integration of multi-criteria decision analysis and statistical models for landslide susceptibility mapping in the western Algiers Province (Algeria) using GIS techniques and remote sensing data
Landslide susceptibility assessment and prediction are among the main processing for disaster management and land use planning activities. Therefore, the general purpose of this research was to evaluate GIS-based spatial modeling of landslides in the western Algiers Province using five models, namely, frequency ratio (FR), weights of evidence (WoE), evidential belief function (EBF), logistic regression (LR), and analytical hierarchy process (AHP), and then compare their performances. At first, a landslide inventory map was prepared according to Google Earth satellite images, historical records, and extensive field surveys. The recorded landslides were divided into two groups (70% and 30%) to establish the training and validation models. In the next step, GIS techniques and remote sensing data were used, to prepare a spatial database containing 13 landslide conditioning factors: lithology, distance to lithological boundaries, permeability, slope, exposure, altitude, profile curvature, plan curvature, precipitation, distance to rivers, topographic wetness index, normalized difference vegetation index, and distance to roads. Finally, the landslide susceptibility maps were produced using the five models and validated by the areas under the relative operative characteristic curve (AUC). The AUC results showed a significant improvement in susceptibility map accuracy; the FR model has the best performance in the training and prediction process (90%), followed by LR (88%, 89%), WoE (88%, 87%), EBF (86%,86%), and AHP (76%,75%), respectively. The produced maps in the current study could be useful for land use planning and hazard mitigation purposes in western Algiers Province.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements