利用碳纳米材料提高微生物燃料电池中废水的生物发电量

Y. Attia, M. Samer, Mahmoud S.M. Mohamed, Mohamed Salah, Elshaimaa Moustafa, Randa M. Abdel Hameed, Hassan Elsayed, E. Abdelsalam
{"title":"利用碳纳米材料提高微生物燃料电池中废水的生物发电量","authors":"Y. Attia, M. Samer, Mahmoud S.M. Mohamed, Mohamed Salah, Elshaimaa Moustafa, Randa M. Abdel Hameed, Hassan Elsayed, E. Abdelsalam","doi":"10.1002/jctb.7620","DOIUrl":null,"url":null,"abstract":"Background: Microbial fuel cells (MFCs) offer a promising approach for treating wastewater and generating electrical energy simultaneously. However, their implementation in wastewater treatment plants is hindered by the limited electricity generation, often attributed to the electrolyte's high resistance. This study aimed to improve bioelectricity generation in MFCs by adding nanomaterials to the electrolyte to enhance conductivity.Results: Three types of nanomaterials, carbon nanotubes (CNTs), graphitic carbon nitride (g‐C3N4), and reduced graphene oxide (r‐GO), were synthesized and addition to the electrolyte at a concentration of 50 mg in 1.5 L. MFC performance was evaluated, employed a Hydraulic Retention Time (HRT) of 140 h, and compared to a control with no nanomaterials added. The addition of nanomaterials significantly improved MFC performance. Compared to the control, the MFCs with CNTs, g‐C3N4, and r‐GO exhibited: Higher voltage: 1.301 V (CNTs), 1.286 V (g‐C3N4), 1.280 V (r‐GO) vs. 0.570 V (control), Increased power density: 14.11 mW/m3 (CNTs), 13.78 mW/m3 (g‐C3N4), 13.66 mW/m3 (r‐GO) vs. 2.71 mW/m3 (control), Enhanced areal power density: 21.06 mW/m2 (CNTs), 20.57 mW/m2 (g‐C3N4), 20.39 mW/m2 (r‐GO) vs. 4.04 mW/m2 (control), and Improved coulombic efficiency: 19.43% (CNTs), 19.19% (g‐C3N4), 19.11% (r‐GO) vs. 8.54% (control).Conclusion: Incorporating nanomaterials into the MFC electrolyte significantly increased bioelectricity generation by 5.21 times and coulombic efficiency by 2.28 times compared to the control. This improvement is attributed to the high specific surface area of the nanomaterials, which facilitates the adhesion and growth of microorganisms around the anode, enhancing direct electron transfer.This article is protected by copyright. All rights reserved.","PeriodicalId":306678,"journal":{"name":"Journal of Chemical Technology & Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Bioelectricity Generation from Wastewater in Microbial Fuel Cells Using Carbon Nanomaterials\",\"authors\":\"Y. Attia, M. Samer, Mahmoud S.M. Mohamed, Mohamed Salah, Elshaimaa Moustafa, Randa M. Abdel Hameed, Hassan Elsayed, E. Abdelsalam\",\"doi\":\"10.1002/jctb.7620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Microbial fuel cells (MFCs) offer a promising approach for treating wastewater and generating electrical energy simultaneously. However, their implementation in wastewater treatment plants is hindered by the limited electricity generation, often attributed to the electrolyte's high resistance. This study aimed to improve bioelectricity generation in MFCs by adding nanomaterials to the electrolyte to enhance conductivity.Results: Three types of nanomaterials, carbon nanotubes (CNTs), graphitic carbon nitride (g‐C3N4), and reduced graphene oxide (r‐GO), were synthesized and addition to the electrolyte at a concentration of 50 mg in 1.5 L. MFC performance was evaluated, employed a Hydraulic Retention Time (HRT) of 140 h, and compared to a control with no nanomaterials added. The addition of nanomaterials significantly improved MFC performance. Compared to the control, the MFCs with CNTs, g‐C3N4, and r‐GO exhibited: Higher voltage: 1.301 V (CNTs), 1.286 V (g‐C3N4), 1.280 V (r‐GO) vs. 0.570 V (control), Increased power density: 14.11 mW/m3 (CNTs), 13.78 mW/m3 (g‐C3N4), 13.66 mW/m3 (r‐GO) vs. 2.71 mW/m3 (control), Enhanced areal power density: 21.06 mW/m2 (CNTs), 20.57 mW/m2 (g‐C3N4), 20.39 mW/m2 (r‐GO) vs. 4.04 mW/m2 (control), and Improved coulombic efficiency: 19.43% (CNTs), 19.19% (g‐C3N4), 19.11% (r‐GO) vs. 8.54% (control).Conclusion: Incorporating nanomaterials into the MFC electrolyte significantly increased bioelectricity generation by 5.21 times and coulombic efficiency by 2.28 times compared to the control. This improvement is attributed to the high specific surface area of the nanomaterials, which facilitates the adhesion and growth of microorganisms around the anode, enhancing direct electron transfer.This article is protected by copyright. All rights reserved.\",\"PeriodicalId\":306678,\"journal\":{\"name\":\"Journal of Chemical Technology & Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Technology & Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jctb.7620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Technology & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jctb.7620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:微生物燃料电池(MFCs)为同时处理废水和产生电能提供了一种前景广阔的方法。然而,由于电解质电阻过高,其发电量有限,阻碍了其在污水处理厂中的应用。本研究旨在通过在电解液中添加纳米材料来增强导电性,从而提高 MFC 的生物发电量:合成了三种纳米材料:碳纳米管 (CNT)、氮化石墨碳 (g-C3N4) 和还原氧化石墨烯 (r-GO)。采用 140 小时的水力停留时间(HRT)对 MFC 性能进行了评估,并与未添加纳米材料的对照组进行了比较。纳米材料的添加大大提高了 MFC 的性能。与对照组相比,添加了 CNTs、g-C3N4 和 r-GO 的 MFC 表现出以下特点更高的电压:1.301 V(CNTs)、1.286 V(g-C3N4)、1.280 V(r-GO)对 0.570 V(对照组);更高的功率密度:14.11 mW/m3(CNTs)、13.78 mW/m3(g-C3N4)、13.66 mW/m3(r-GO)对 2.71 mW/m3(对照组);更高的面积功率密度:21.06 mW/m2(CNTs)、20.57 mW/m2(g-C3N4)、20.39 mW/m2(r-GO)对 4.04 mW/m2(对照组);提高库仑效率:19.43%(CNTs)、19.19%(g-C3N4)、19.11%(r-GO)对 8.54%(对照组):与对照组相比,在 MFC 电解液中加入纳米材料可显著提高生物发电量 5.21 倍和库仑效率 2.28 倍。这种改善归功于纳米材料的高比表面积,它有利于微生物在阳极周围的粘附和生长,增强了直接电子传递。本文受版权保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Bioelectricity Generation from Wastewater in Microbial Fuel Cells Using Carbon Nanomaterials
Background: Microbial fuel cells (MFCs) offer a promising approach for treating wastewater and generating electrical energy simultaneously. However, their implementation in wastewater treatment plants is hindered by the limited electricity generation, often attributed to the electrolyte's high resistance. This study aimed to improve bioelectricity generation in MFCs by adding nanomaterials to the electrolyte to enhance conductivity.Results: Three types of nanomaterials, carbon nanotubes (CNTs), graphitic carbon nitride (g‐C3N4), and reduced graphene oxide (r‐GO), were synthesized and addition to the electrolyte at a concentration of 50 mg in 1.5 L. MFC performance was evaluated, employed a Hydraulic Retention Time (HRT) of 140 h, and compared to a control with no nanomaterials added. The addition of nanomaterials significantly improved MFC performance. Compared to the control, the MFCs with CNTs, g‐C3N4, and r‐GO exhibited: Higher voltage: 1.301 V (CNTs), 1.286 V (g‐C3N4), 1.280 V (r‐GO) vs. 0.570 V (control), Increased power density: 14.11 mW/m3 (CNTs), 13.78 mW/m3 (g‐C3N4), 13.66 mW/m3 (r‐GO) vs. 2.71 mW/m3 (control), Enhanced areal power density: 21.06 mW/m2 (CNTs), 20.57 mW/m2 (g‐C3N4), 20.39 mW/m2 (r‐GO) vs. 4.04 mW/m2 (control), and Improved coulombic efficiency: 19.43% (CNTs), 19.19% (g‐C3N4), 19.11% (r‐GO) vs. 8.54% (control).Conclusion: Incorporating nanomaterials into the MFC electrolyte significantly increased bioelectricity generation by 5.21 times and coulombic efficiency by 2.28 times compared to the control. This improvement is attributed to the high specific surface area of the nanomaterials, which facilitates the adhesion and growth of microorganisms around the anode, enhancing direct electron transfer.This article is protected by copyright. All rights reserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Degradation of dairy wastewater using sustainable nanotechnology composed of a‐Fe2O3/TiO2 rod‐shaped material and photocatalytic process: a complementary treatment approach for industrial wastewater Chiral separation of terbutaline by supercritical fluid chromatography with peaks purity determination by UPLC‐MS and modeling for chiral recognition mechanism Synthesis of palladium nanoparticles utilizing biotemplates and investigation of their synergistic catalytic performance Enhancing Bioelectricity Generation from Wastewater in Microbial Fuel Cells Using Carbon Nanomaterials Effect of pore size distribution of biomass activated carbon adsorbents on the adsorption capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1