Y. Attia, M. Samer, Mahmoud S.M. Mohamed, Mohamed Salah, Elshaimaa Moustafa, Randa M. Abdel Hameed, Hassan Elsayed, E. Abdelsalam
Background: Microbial fuel cells (MFCs) offer a promising approach for treating wastewater and generating electrical energy simultaneously. However, their implementation in wastewater treatment plants is hindered by the limited electricity generation, often attributed to the electrolyte's high resistance. This study aimed to improve bioelectricity generation in MFCs by adding nanomaterials to the electrolyte to enhance conductivity.Results: Three types of nanomaterials, carbon nanotubes (CNTs), graphitic carbon nitride (g‐C3N4), and reduced graphene oxide (r‐GO), were synthesized and addition to the electrolyte at a concentration of 50 mg in 1.5 L. MFC performance was evaluated, employed a Hydraulic Retention Time (HRT) of 140 h, and compared to a control with no nanomaterials added. The addition of nanomaterials significantly improved MFC performance. Compared to the control, the MFCs with CNTs, g‐C3N4, and r‐GO exhibited: Higher voltage: 1.301 V (CNTs), 1.286 V (g‐C3N4), 1.280 V (r‐GO) vs. 0.570 V (control), Increased power density: 14.11 mW/m3 (CNTs), 13.78 mW/m3 (g‐C3N4), 13.66 mW/m3 (r‐GO) vs. 2.71 mW/m3 (control), Enhanced areal power density: 21.06 mW/m2 (CNTs), 20.57 mW/m2 (g‐C3N4), 20.39 mW/m2 (r‐GO) vs. 4.04 mW/m2 (control), and Improved coulombic efficiency: 19.43% (CNTs), 19.19% (g‐C3N4), 19.11% (r‐GO) vs. 8.54% (control).Conclusion: Incorporating nanomaterials into the MFC electrolyte significantly increased bioelectricity generation by 5.21 times and coulombic efficiency by 2.28 times compared to the control. This improvement is attributed to the high specific surface area of the nanomaterials, which facilitates the adhesion and growth of microorganisms around the anode, enhancing direct electron transfer.This article is protected by copyright. All rights reserved.
{"title":"Enhancing Bioelectricity Generation from Wastewater in Microbial Fuel Cells Using Carbon Nanomaterials","authors":"Y. Attia, M. Samer, Mahmoud S.M. Mohamed, Mohamed Salah, Elshaimaa Moustafa, Randa M. Abdel Hameed, Hassan Elsayed, E. Abdelsalam","doi":"10.1002/jctb.7620","DOIUrl":"https://doi.org/10.1002/jctb.7620","url":null,"abstract":"Background: Microbial fuel cells (MFCs) offer a promising approach for treating wastewater and generating electrical energy simultaneously. However, their implementation in wastewater treatment plants is hindered by the limited electricity generation, often attributed to the electrolyte's high resistance. This study aimed to improve bioelectricity generation in MFCs by adding nanomaterials to the electrolyte to enhance conductivity.Results: Three types of nanomaterials, carbon nanotubes (CNTs), graphitic carbon nitride (g‐C3N4), and reduced graphene oxide (r‐GO), were synthesized and addition to the electrolyte at a concentration of 50 mg in 1.5 L. MFC performance was evaluated, employed a Hydraulic Retention Time (HRT) of 140 h, and compared to a control with no nanomaterials added. The addition of nanomaterials significantly improved MFC performance. Compared to the control, the MFCs with CNTs, g‐C3N4, and r‐GO exhibited: Higher voltage: 1.301 V (CNTs), 1.286 V (g‐C3N4), 1.280 V (r‐GO) vs. 0.570 V (control), Increased power density: 14.11 mW/m3 (CNTs), 13.78 mW/m3 (g‐C3N4), 13.66 mW/m3 (r‐GO) vs. 2.71 mW/m3 (control), Enhanced areal power density: 21.06 mW/m2 (CNTs), 20.57 mW/m2 (g‐C3N4), 20.39 mW/m2 (r‐GO) vs. 4.04 mW/m2 (control), and Improved coulombic efficiency: 19.43% (CNTs), 19.19% (g‐C3N4), 19.11% (r‐GO) vs. 8.54% (control).Conclusion: Incorporating nanomaterials into the MFC electrolyte significantly increased bioelectricity generation by 5.21 times and coulombic efficiency by 2.28 times compared to the control. This improvement is attributed to the high specific surface area of the nanomaterials, which facilitates the adhesion and growth of microorganisms around the anode, enhancing direct electron transfer.This article is protected by copyright. All rights reserved.","PeriodicalId":306678,"journal":{"name":"Journal of Chemical Technology & Biotechnology","volume":"20 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139776136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to investigate the correlation between the pore size distribution of biomass activated carbon adsorbents (BACAs) and VOCs (Volatile Organic Compounds) adsorption/desorption performance. four BACAs with same specific surface area but different pore size distribution were prepared under different experimental conditions and processes.The impact of the pore size distribution of BACAs on the adsorption/desorption performance of benzene, toluene and xylene was investigated. The results indicated that the adsorption ability of the prepared BACAs for benzene, toluene, and xylene was mostly affected by the pore size distributed in 2.60 ~ 3.25 nm, 2.68 ~ 3.35 nm and 4.20 ~ 4.90 nm, respectively, when the studied BACAs had similar specific surface area (SBET ≈ 1080 m2/g). However, the desorption amount of adsorbed benzene molecules mainly relies on the pore structure of the BACAs with the pore size distributed in 3.95 ~ 4.60 nm.The pore structures of BACAs distributed in different pore size ranges have various effects on the phenyl VOCs adsorption capacity. Benzene adsorption on the BACAs were mainly affected by the microporous structures. The pore structure with larger pore size was more favorable for the desorption of the adsorbed toluene and xylene molecules compared to the adsorbed benzene molecules. Benzene, toluene, and xylene had low residual rates in the studied activated carbon adsorbents to show superior regenerative properties. This work could provide an important reference for the design, preparation, and selection of activated carbon adsorbents for the adsorption capacity of benzene, toluene, and xylene.This article is protected by copyright. All rights reserved.
{"title":"Effect of pore size distribution of biomass activated carbon adsorbents on the adsorption capacity","authors":"Qiren Wang, Tingyu Li, Haodong Tian, Die Zou, Jia Zeng, Shuang Chen, Hongmei Xie, Guilin Zhou","doi":"10.1002/jctb.7617","DOIUrl":"https://doi.org/10.1002/jctb.7617","url":null,"abstract":"In order to investigate the correlation between the pore size distribution of biomass activated carbon adsorbents (BACAs) and VOCs (Volatile Organic Compounds) adsorption/desorption performance. four BACAs with same specific surface area but different pore size distribution were prepared under different experimental conditions and processes.The impact of the pore size distribution of BACAs on the adsorption/desorption performance of benzene, toluene and xylene was investigated. The results indicated that the adsorption ability of the prepared BACAs for benzene, toluene, and xylene was mostly affected by the pore size distributed in 2.60 ~ 3.25 nm, 2.68 ~ 3.35 nm and 4.20 ~ 4.90 nm, respectively, when the studied BACAs had similar specific surface area (SBET ≈ 1080 m2/g). However, the desorption amount of adsorbed benzene molecules mainly relies on the pore structure of the BACAs with the pore size distributed in 3.95 ~ 4.60 nm.The pore structures of BACAs distributed in different pore size ranges have various effects on the phenyl VOCs adsorption capacity. Benzene adsorption on the BACAs were mainly affected by the microporous structures. The pore structure with larger pore size was more favorable for the desorption of the adsorbed toluene and xylene molecules compared to the adsorbed benzene molecules. Benzene, toluene, and xylene had low residual rates in the studied activated carbon adsorbents to show superior regenerative properties. This work could provide an important reference for the design, preparation, and selection of activated carbon adsorbents for the adsorption capacity of benzene, toluene, and xylene.This article is protected by copyright. All rights reserved.","PeriodicalId":306678,"journal":{"name":"Journal of Chemical Technology & Biotechnology","volume":"53 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139779973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The precise detection of NO2 requires the conversion of NO2 to NO using a molybdenum conversion furnace. Currently, molybdenum wire is utilized as the conversion agent for the molybdenum furnace; however, the high operating temperature of the molybdenum wire can inadvertently convert NH3 in industrial exhaust gas to NO, potentially impacting the accuracy of the detection process. Consequently, there is a pressing need to develop low‐temperature conversion agents. The study aims to establish a correlation between the iodine value, which characterizes the liquid‐phase adsorption properties of activated carbon, and its capacity for NO2 conversion, with the potential to provide valuable theoretical insights supporting the development of commercial molybdenum furnace conversion agents.The iodine value of coconut shell carbon is closely related to their reaction performance for NO2 to NO among three samples with different iodine values. AC‐900, AC‐1200, and AC‐1500 exhibit notable NO2 to NO conversion capabilities. Specifically, AC‐900 demonstrates significantly superior reaction performance compared to AC‐1200 and AC‐1500. Under conditions of 175 °C and 1 L/min, the NO2 conversion rates for AC‐900, AC‐1200, and AC‐1500 are measured at 97.3%, 88.2%, and 86.4%, respectively. Furthermore, the evaluation of AC‐1200 and AC‐1500 at different flow rates at 125 °C reveals a decrease in NO2 conversion with increasing gas flow rate. AC‐1200 exhibits better reaction performance compared to AC‐1500.The structure‐activity relationship between iodine value of coconut shell carbon and their performance for NO2 to NO is revealed. The capacity of activated carbon to convert NO2 is significantly influenced by the presence of oxygen functional groups and the proportion of micropores. The content of micropores and oxygen‐containing functional groups, especially phenolic hydroxyl groups, decreases with the increase of iodine value, leading to a decrease in the reaction performance of the conversion agent.This article is protected by copyright. All rights reserved.
{"title":"The correlation between the iodine value of coconut shell carbon and their reaction performance for NO2 to NO","authors":"Shifang Mu, Hongliang Wang, Yan Wang, Junchao Gu, Yujing Weng, Qi Sun, Yulong Zhang","doi":"10.1002/jctb.7619","DOIUrl":"https://doi.org/10.1002/jctb.7619","url":null,"abstract":"The precise detection of NO2 requires the conversion of NO2 to NO using a molybdenum conversion furnace. Currently, molybdenum wire is utilized as the conversion agent for the molybdenum furnace; however, the high operating temperature of the molybdenum wire can inadvertently convert NH3 in industrial exhaust gas to NO, potentially impacting the accuracy of the detection process. Consequently, there is a pressing need to develop low‐temperature conversion agents. The study aims to establish a correlation between the iodine value, which characterizes the liquid‐phase adsorption properties of activated carbon, and its capacity for NO2 conversion, with the potential to provide valuable theoretical insights supporting the development of commercial molybdenum furnace conversion agents.The iodine value of coconut shell carbon is closely related to their reaction performance for NO2 to NO among three samples with different iodine values. AC‐900, AC‐1200, and AC‐1500 exhibit notable NO2 to NO conversion capabilities. Specifically, AC‐900 demonstrates significantly superior reaction performance compared to AC‐1200 and AC‐1500. Under conditions of 175 °C and 1 L/min, the NO2 conversion rates for AC‐900, AC‐1200, and AC‐1500 are measured at 97.3%, 88.2%, and 86.4%, respectively. Furthermore, the evaluation of AC‐1200 and AC‐1500 at different flow rates at 125 °C reveals a decrease in NO2 conversion with increasing gas flow rate. AC‐1200 exhibits better reaction performance compared to AC‐1500.The structure‐activity relationship between iodine value of coconut shell carbon and their performance for NO2 to NO is revealed. The capacity of activated carbon to convert NO2 is significantly influenced by the presence of oxygen functional groups and the proportion of micropores. The content of micropores and oxygen‐containing functional groups, especially phenolic hydroxyl groups, decreases with the increase of iodine value, leading to a decrease in the reaction performance of the conversion agent.This article is protected by copyright. All rights reserved.","PeriodicalId":306678,"journal":{"name":"Journal of Chemical Technology & Biotechnology","volume":"7 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139780445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-27DOI: 10.21203/rs.3.rs-846230/v1
Natalia Klanovicz, F. Stefanski, A. F. Camargo, W. Michelon, H. Treichel, A. C. Teixeira
The occurrence of micropollutants in aqueous matrices has become a global concern and a challenge for wastewater treatment plants. Monitoring their toxicity has shown that these compounds, even at low concentrations, pose risks to human and environmental health. Therefore, our study aimed to prospect immobilization strategies for non-commercial oxidoreductase enzymes and insert them in the context of pollutant remediation. The enzymatic extract was obtained by submerged fermentation of the fungus Trichoderma koningiopsis in an alternative substrate, consisting of fresh microalgal biomass from the phycoremediation process. The immobilization efficiency of peroxidase (POD) was evaluated by monitoring the residual activity (RA) and the discoloration potential (DP) of a synthetic dye solution. Concomitantly, the catalytic properties of free POD were explored, and the most promising storage strategy to maintain the enzymatic activity was studied. Guaiacol peroxidase from T. koningiopsis expressed specific activity of up to 7801.1 U mg− 1 in the free form, showing stability when subjected to up 80°C in a pH range between 4.0–8.0. Furthermore, the bioproduct immobilized on magnetic nanoparticles expressed up to 688% RA and 100% DP. An increase in the RA of the enzyme, both in free and immobilized form, was also observe after storage for up to 8 months. The synthesized magnetic nanozymes showed good reusability, maintaining 13546.4 U mg− 1 after ten cycles and removing 93% of color in a second batch. Toxicological evaluation with Allium cepa indicated that the enzymatic process of color removal with immobilized POD, despite maintaining unwanted cytotoxic effects, was essential to eliminate genotoxic effects. In this sense, the immobilization processes of T. koningiopsis peroxidase presented in our work are promising for the enzyme market and for the wastewater treatment sector.
水基中微量污染物的存在已成为全球关注的问题,也是污水处理厂面临的挑战。对其毒性的监测表明,这些化合物即使浓度很低,也会对人类和环境健康构成风险。因此,本研究旨在探索非商业氧化还原酶的固定化策略,并将其应用于污染物修复。该酶提取物是通过在由藻修复过程中产生的新鲜微藻生物量组成的替代底物中对真菌克宁质木霉进行深层发酵获得的。通过监测合成染料溶液的残留活性(RA)和变色势(DP)来评价过氧化物酶(POD)的固定化效率。同时,对游离POD的催化性能进行了探讨,并对最有希望保持酶活性的储存策略进行了研究。在游离状态下,愈创木酚过氧化物酶的比活性高达7801.1 U mg−1,在高达80°C、pH值在4.0-8.0之间的条件下表现出稳定性。此外,磁性纳米颗粒固定化的生物产物表达率高达688% RA和100% DP。在储存8个月后,游离和固定形式的酶的RA也有所增加。所合成的磁性纳米酶具有良好的可重复使用性,10次循环后仍保持13546.4 U mg−1,第二批脱色率达93%。对葱的毒理学评价表明,固定化POD除色的酶促过程,尽管保持了不必要的细胞毒性作用,但对于消除遗传毒性作用是必不可少的。从这个意义上说,我们的工作中提出的koningiopsis过氧化物酶的固定化工艺对酶市场和废水处理领域有很大的前景。
{"title":"Complete wastewater discoloration by a novel peroxidase source with promising bioxidative properties","authors":"Natalia Klanovicz, F. Stefanski, A. F. Camargo, W. Michelon, H. Treichel, A. C. Teixeira","doi":"10.21203/rs.3.rs-846230/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-846230/v1","url":null,"abstract":"\u0000 The occurrence of micropollutants in aqueous matrices has become a global concern and a challenge for wastewater treatment plants. Monitoring their toxicity has shown that these compounds, even at low concentrations, pose risks to human and environmental health. Therefore, our study aimed to prospect immobilization strategies for non-commercial oxidoreductase enzymes and insert them in the context of pollutant remediation. The enzymatic extract was obtained by submerged fermentation of the fungus Trichoderma koningiopsis in an alternative substrate, consisting of fresh microalgal biomass from the phycoremediation process. The immobilization efficiency of peroxidase (POD) was evaluated by monitoring the residual activity (RA) and the discoloration potential (DP) of a synthetic dye solution. Concomitantly, the catalytic properties of free POD were explored, and the most promising storage strategy to maintain the enzymatic activity was studied. Guaiacol peroxidase from T. koningiopsis expressed specific activity of up to 7801.1 U mg− 1 in the free form, showing stability when subjected to up 80°C in a pH range between 4.0–8.0. Furthermore, the bioproduct immobilized on magnetic nanoparticles expressed up to 688% RA and 100% DP. An increase in the RA of the enzyme, both in free and immobilized form, was also observe after storage for up to 8 months. The synthesized magnetic nanozymes showed good reusability, maintaining 13546.4 U mg− 1 after ten cycles and removing 93% of color in a second batch. Toxicological evaluation with Allium cepa indicated that the enzymatic process of color removal with immobilized POD, despite maintaining unwanted cytotoxic effects, was essential to eliminate genotoxic effects. In this sense, the immobilization processes of T. koningiopsis peroxidase presented in our work are promising for the enzyme market and for the wastewater treatment sector.","PeriodicalId":306678,"journal":{"name":"Journal of Chemical Technology & Biotechnology","volume":"135 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126984423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}