用于轻量级单张图像超分辨率的多注意力特征蒸馏神经网络

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Intelligent Systems Pub Date : 2024-02-15 DOI:10.1155/2024/3255233
Yongfei Zhang, Xinying Lin, Hong Yang, Jie He, Linbo Qing, Xiaohai He, Yi Li, Honggang Chen
{"title":"用于轻量级单张图像超分辨率的多注意力特征蒸馏神经网络","authors":"Yongfei Zhang,&nbsp;Xinying Lin,&nbsp;Hong Yang,&nbsp;Jie He,&nbsp;Linbo Qing,&nbsp;Xiaohai He,&nbsp;Yi Li,&nbsp;Honggang Chen","doi":"10.1155/2024/3255233","DOIUrl":null,"url":null,"abstract":"<p>In recent years, remarkable performance improvements have been produced by deep convolutional neural networks (CNN) for single image super-resolution (SISR). Nevertheless, a high proportion of CNN-based SISR models are with quite a few network parameters and high computational complexity for deep or wide architectures. How to more fully utilize deep features to make a balance between model complexity and reconstruction performance is one of the main challenges in this field. To address this problem, on the basis of the well-known information multi-distillation model, a multi-attention feature distillation network termed as MAFDN is developed for lightweight and accurate SISR. Specifically, an effective multi-attention feature distillation block (MAFDB) is designed and used as the basic feature extraction unit in MAFDN. With the help of multi-attention layers including pixel attention, spatial attention, and channel attention, MAFDB uses multiple information distillation branches to learn more discriminative and representative features. Furthermore, MAFDB introduces the depthwise over-parameterized convolutional layer (DO-Conv)-based residual block (OPCRB) to enhance its ability without incurring any parameter and computation increase in the inference stage. The results on commonly used datasets demonstrate that our MAFDN outperforms existing representative lightweight SISR models when taking both reconstruction performance and model complexity into consideration. For example, for ×4 SR on Set5, MAFDN (597K/33.79G) obtains 0.21 dB/0.0037 and 0.10 dB/0.0015 PSNR/SSIM gains over the attention-based SR model AFAN (692K/50.90G) and the feature distillation-based SR model DDistill-SR (675K/32.83G), respectively.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Attention Feature Distillation Neural Network for Lightweight Single Image Super-Resolution\",\"authors\":\"Yongfei Zhang,&nbsp;Xinying Lin,&nbsp;Hong Yang,&nbsp;Jie He,&nbsp;Linbo Qing,&nbsp;Xiaohai He,&nbsp;Yi Li,&nbsp;Honggang Chen\",\"doi\":\"10.1155/2024/3255233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, remarkable performance improvements have been produced by deep convolutional neural networks (CNN) for single image super-resolution (SISR). Nevertheless, a high proportion of CNN-based SISR models are with quite a few network parameters and high computational complexity for deep or wide architectures. How to more fully utilize deep features to make a balance between model complexity and reconstruction performance is one of the main challenges in this field. To address this problem, on the basis of the well-known information multi-distillation model, a multi-attention feature distillation network termed as MAFDN is developed for lightweight and accurate SISR. Specifically, an effective multi-attention feature distillation block (MAFDB) is designed and used as the basic feature extraction unit in MAFDN. With the help of multi-attention layers including pixel attention, spatial attention, and channel attention, MAFDB uses multiple information distillation branches to learn more discriminative and representative features. Furthermore, MAFDB introduces the depthwise over-parameterized convolutional layer (DO-Conv)-based residual block (OPCRB) to enhance its ability without incurring any parameter and computation increase in the inference stage. The results on commonly used datasets demonstrate that our MAFDN outperforms existing representative lightweight SISR models when taking both reconstruction performance and model complexity into consideration. For example, for ×4 SR on Set5, MAFDN (597K/33.79G) obtains 0.21 dB/0.0037 and 0.10 dB/0.0015 PSNR/SSIM gains over the attention-based SR model AFAN (692K/50.90G) and the feature distillation-based SR model DDistill-SR (675K/32.83G), respectively.</p>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/3255233\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3255233","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,深度卷积神经网络(CNN)在单图像超分辨率(SISR)方面的性能有了显著提高。尽管如此,基于 CNN 的 SISR 模型仍有很大一部分存在网络参数过多、计算复杂度过高等问题。如何更充分地利用深度特征,在模型复杂度和重建性能之间取得平衡,是该领域面临的主要挑战之一。为解决这一问题,在著名的信息多重蒸馏模型的基础上,开发了一种多注意特征蒸馏网络,称为 MAFDN,用于轻量级和精确的 SISR。具体来说,设计了一个有效的多注意特征蒸馏块(MAFDB),并将其作为 MAFDN 的基本特征提取单元。借助多注意层(包括像素注意、空间注意和通道注意),MAFDB 利用多个信息提取分支来学习更多具有区分性和代表性的特征。此外,MAFDB 还引入了基于深度过参数化卷积层(DO-Conv)的残差块(OPCRB),在不增加推理阶段参数和计算量的情况下提高了推理能力。对常用数据集的研究结果表明,考虑到重建性能和模型复杂度,我们的 MAFDN 优于现有的代表性轻量级 SISR 模型。例如,对于 Set5 上的 ×4 SR,MAFDN(597K/33.79G)比基于注意力的 SR 模型 AFAN(692K/50.90G)和基于特征蒸馏的 SR 模型 DDistill-SR(675K/32.83G)分别提高了 0.21 dB/0.0037 和 0.10 dB/0.0015 PSNR/SSIM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-Attention Feature Distillation Neural Network for Lightweight Single Image Super-Resolution

In recent years, remarkable performance improvements have been produced by deep convolutional neural networks (CNN) for single image super-resolution (SISR). Nevertheless, a high proportion of CNN-based SISR models are with quite a few network parameters and high computational complexity for deep or wide architectures. How to more fully utilize deep features to make a balance between model complexity and reconstruction performance is one of the main challenges in this field. To address this problem, on the basis of the well-known information multi-distillation model, a multi-attention feature distillation network termed as MAFDN is developed for lightweight and accurate SISR. Specifically, an effective multi-attention feature distillation block (MAFDB) is designed and used as the basic feature extraction unit in MAFDN. With the help of multi-attention layers including pixel attention, spatial attention, and channel attention, MAFDB uses multiple information distillation branches to learn more discriminative and representative features. Furthermore, MAFDB introduces the depthwise over-parameterized convolutional layer (DO-Conv)-based residual block (OPCRB) to enhance its ability without incurring any parameter and computation increase in the inference stage. The results on commonly used datasets demonstrate that our MAFDN outperforms existing representative lightweight SISR models when taking both reconstruction performance and model complexity into consideration. For example, for ×4 SR on Set5, MAFDN (597K/33.79G) obtains 0.21 dB/0.0037 and 0.10 dB/0.0015 PSNR/SSIM gains over the attention-based SR model AFAN (692K/50.90G) and the feature distillation-based SR model DDistill-SR (675K/32.83G), respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
期刊最新文献
A Novel Self-Attention Transfer Adaptive Learning Approach for Brain Tumor Categorization A Manifold-Guided Gravitational Search Algorithm for High-Dimensional Global Optimization Problems PU-GNN: A Positive-Unlabeled Learning Method for Polypharmacy Side-Effects Detection Based on Graph Neural Networks Real-World Image Deraining Using Model-Free Unsupervised Learning Complex Question Answering Method on Risk Management Knowledge Graph: Multi-Intent Information Retrieval Based on Knowledge Subgraphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1