{"title":"存在噪声时最先进的多模态遥感图像匹配方法的性能评估","authors":"Negar Jovhari, Amin Sedaghat, Nazila Mohammadi, Nima Farhadi, Alireza Bahrami Mahtaj","doi":"10.1007/s12518-024-00553-y","DOIUrl":null,"url":null,"abstract":"<div><p>To date, various image registration approaches have been conducted to deal with distortions between multimodal image pairs. However, significant existing noise as an unavoidable issue deteriorates many conventional and advanced methods. The critical key is to choose a highly robust local feature detection and description method as the principle for many matching frameworks. However, few studies have concentrated on dealing with the noise issue. For this purpose, this paper evaluates the most well-known and state-of-the-art feature descriptors against artificial sequential noise levels. The employed methods consist of various handcrafted learning-based descriptors. It is further indicated that in addition to the designed structural feature map, multiple criteria, such as spatial arrangement, and the magnitude of the support area, play roles in achieving successful matching, especially in the presence of dramatic noise and complex distortion between multimodal images. Moreover, to filter out the noisy features, the employed local feature detectors are integrated with the uniform competency algorithm. Experimental results demonstrate the overall superiority (20.0% on average) of the MKD (multiple-kernel descriptor) due to advanced designed integrated kernels and polar arrangements.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":"16 1","pages":"215 - 233"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of state-of-the-art multimodal remote sensing image matching methods in the presence of noise\",\"authors\":\"Negar Jovhari, Amin Sedaghat, Nazila Mohammadi, Nima Farhadi, Alireza Bahrami Mahtaj\",\"doi\":\"10.1007/s12518-024-00553-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To date, various image registration approaches have been conducted to deal with distortions between multimodal image pairs. However, significant existing noise as an unavoidable issue deteriorates many conventional and advanced methods. The critical key is to choose a highly robust local feature detection and description method as the principle for many matching frameworks. However, few studies have concentrated on dealing with the noise issue. For this purpose, this paper evaluates the most well-known and state-of-the-art feature descriptors against artificial sequential noise levels. The employed methods consist of various handcrafted learning-based descriptors. It is further indicated that in addition to the designed structural feature map, multiple criteria, such as spatial arrangement, and the magnitude of the support area, play roles in achieving successful matching, especially in the presence of dramatic noise and complex distortion between multimodal images. Moreover, to filter out the noisy features, the employed local feature detectors are integrated with the uniform competency algorithm. Experimental results demonstrate the overall superiority (20.0% on average) of the MKD (multiple-kernel descriptor) due to advanced designed integrated kernels and polar arrangements.</p></div>\",\"PeriodicalId\":46286,\"journal\":{\"name\":\"Applied Geomatics\",\"volume\":\"16 1\",\"pages\":\"215 - 233\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12518-024-00553-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-024-00553-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Performance evaluation of state-of-the-art multimodal remote sensing image matching methods in the presence of noise
To date, various image registration approaches have been conducted to deal with distortions between multimodal image pairs. However, significant existing noise as an unavoidable issue deteriorates many conventional and advanced methods. The critical key is to choose a highly robust local feature detection and description method as the principle for many matching frameworks. However, few studies have concentrated on dealing with the noise issue. For this purpose, this paper evaluates the most well-known and state-of-the-art feature descriptors against artificial sequential noise levels. The employed methods consist of various handcrafted learning-based descriptors. It is further indicated that in addition to the designed structural feature map, multiple criteria, such as spatial arrangement, and the magnitude of the support area, play roles in achieving successful matching, especially in the presence of dramatic noise and complex distortion between multimodal images. Moreover, to filter out the noisy features, the employed local feature detectors are integrated with the uniform competency algorithm. Experimental results demonstrate the overall superiority (20.0% on average) of the MKD (multiple-kernel descriptor) due to advanced designed integrated kernels and polar arrangements.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements