利用碳点纸和荧光数字图像分析测定水样中 Hg2+ 的新方法

M. V. Maia, W. Suarez, Vagner Bezerra dos Santos, Severino Carlos Bezerra de Oliveira, João Paulo Barbosa de Almeida
{"title":"利用碳点纸和荧光数字图像分析测定水样中 Hg2+ 的新方法","authors":"M. V. Maia, W. Suarez, Vagner Bezerra dos Santos, Severino Carlos Bezerra de Oliveira, João Paulo Barbosa de Almeida","doi":"10.1002/jctb.7618","DOIUrl":null,"url":null,"abstract":"This work proposes the use of a simple inexpensive method for the hydrothermal synthesis of fluorescent carbon dots nanoparticles (CDs) from rice starch aimed at the determination of Hg2+ in water. The proposed method involved using a paper‐based analytical device coupled to a 3D plate, with a UV‐LED chamber and a smartphone for the acquisition and analysis of the fluorescence digital images of the CDs.The size of the carbon dots ranged from 0.5 to 3 nm, with an average particle size of approximately 1 nm. The functionalization of carbon dots with methimazole allowed a high selective for Hg2+ determination. The results obtained showed a linear response R2 of 0.997 and Hg2+ concentration in the range of 0.5 to 45.0 μΜ with a LOD and LOQ of 0.23 and 0.62 μmol L‐1, respectively. The results of the study show that there are no significant differences, at 95% confidence level, between the data obtained from the application of the proposed method and the reference method.The proposed method is in line with the principles of green chemistry, as it involves the use of renewable sources for starch extraction and a hydrothermal synthesis process that does not employ toxic reagents. In addition, the method employs only 15 μL of reagent/sample.This article is protected by copyright. All rights reserved.","PeriodicalId":306678,"journal":{"name":"Journal of Chemical Technology & Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel approach to Hg2+ determination in water samples using carbon dots based on paper and fluorescence digital image analysis\",\"authors\":\"M. V. Maia, W. Suarez, Vagner Bezerra dos Santos, Severino Carlos Bezerra de Oliveira, João Paulo Barbosa de Almeida\",\"doi\":\"10.1002/jctb.7618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes the use of a simple inexpensive method for the hydrothermal synthesis of fluorescent carbon dots nanoparticles (CDs) from rice starch aimed at the determination of Hg2+ in water. The proposed method involved using a paper‐based analytical device coupled to a 3D plate, with a UV‐LED chamber and a smartphone for the acquisition and analysis of the fluorescence digital images of the CDs.The size of the carbon dots ranged from 0.5 to 3 nm, with an average particle size of approximately 1 nm. The functionalization of carbon dots with methimazole allowed a high selective for Hg2+ determination. The results obtained showed a linear response R2 of 0.997 and Hg2+ concentration in the range of 0.5 to 45.0 μΜ with a LOD and LOQ of 0.23 and 0.62 μmol L‐1, respectively. The results of the study show that there are no significant differences, at 95% confidence level, between the data obtained from the application of the proposed method and the reference method.The proposed method is in line with the principles of green chemistry, as it involves the use of renewable sources for starch extraction and a hydrothermal synthesis process that does not employ toxic reagents. In addition, the method employs only 15 μL of reagent/sample.This article is protected by copyright. All rights reserved.\",\"PeriodicalId\":306678,\"journal\":{\"name\":\"Journal of Chemical Technology & Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Technology & Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jctb.7618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Technology & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jctb.7618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种利用水热法从大米淀粉中合成荧光碳点纳米颗粒(CDs)的简单廉价方法,旨在测定水中的 Hg2+。所提议的方法包括使用一种与三维板耦合的纸基分析装置,该装置配有紫外-LED 室和智能手机,用于获取和分析碳点的荧光数字图像。碳点的尺寸范围为 0.5 至 3 nm,平均粒径约为 1 nm。用甲巯咪唑对碳点进行官能化后,可以高选择性地测定 Hg2+。结果显示,线性响应 R2 为 0.997,Hg2+ 浓度范围为 0.5 至 45.0 μΜ,LOD 和 LOQ 分别为 0.23 和 0.62 μmol L-1。研究结果表明,在 95% 的置信水平下,应用所提出的方法得到的数据与参考方法之间没有显著差异。所提出的方法符合绿色化学的原则,因为它涉及使用可再生资源提取淀粉和不使用有毒试剂的水热合成工艺。此外,该方法仅使用 15 μL 试剂/样品。本文受版权保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel approach to Hg2+ determination in water samples using carbon dots based on paper and fluorescence digital image analysis
This work proposes the use of a simple inexpensive method for the hydrothermal synthesis of fluorescent carbon dots nanoparticles (CDs) from rice starch aimed at the determination of Hg2+ in water. The proposed method involved using a paper‐based analytical device coupled to a 3D plate, with a UV‐LED chamber and a smartphone for the acquisition and analysis of the fluorescence digital images of the CDs.The size of the carbon dots ranged from 0.5 to 3 nm, with an average particle size of approximately 1 nm. The functionalization of carbon dots with methimazole allowed a high selective for Hg2+ determination. The results obtained showed a linear response R2 of 0.997 and Hg2+ concentration in the range of 0.5 to 45.0 μΜ with a LOD and LOQ of 0.23 and 0.62 μmol L‐1, respectively. The results of the study show that there are no significant differences, at 95% confidence level, between the data obtained from the application of the proposed method and the reference method.The proposed method is in line with the principles of green chemistry, as it involves the use of renewable sources for starch extraction and a hydrothermal synthesis process that does not employ toxic reagents. In addition, the method employs only 15 μL of reagent/sample.This article is protected by copyright. All rights reserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Degradation of dairy wastewater using sustainable nanotechnology composed of a‐Fe2O3/TiO2 rod‐shaped material and photocatalytic process: a complementary treatment approach for industrial wastewater Chiral separation of terbutaline by supercritical fluid chromatography with peaks purity determination by UPLC‐MS and modeling for chiral recognition mechanism Synthesis of palladium nanoparticles utilizing biotemplates and investigation of their synergistic catalytic performance Enhancing Bioelectricity Generation from Wastewater in Microbial Fuel Cells Using Carbon Nanomaterials Effect of pore size distribution of biomass activated carbon adsorbents on the adsorption capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1