用于 LCC-HVDC 系统的快速、高精度换向故障识别方法

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC High Voltage Pub Date : 2024-02-12 DOI:10.1049/hve2.12400
Jing Feng, Zhijie Liu, Kejun Li, Bingkun Li, Jiachen Li, Liangzi Li
{"title":"用于 LCC-HVDC 系统的快速、高精度换向故障识别方法","authors":"Jing Feng,&nbsp;Zhijie Liu,&nbsp;Kejun Li,&nbsp;Bingkun Li,&nbsp;Jiachen Li,&nbsp;Liangzi Li","doi":"10.1049/hve2.12400","DOIUrl":null,"url":null,"abstract":"<p>Commutation failure (CF) is one of the most common issues in line-commuted converter-based high voltage direct current systems (LCC-HVDC), leading to critical power system security and stability problems. Accurate and rapid identification of CF is crucial to prevent subsequent CF in HVDC systems. However, the existing CF identification methods are lack of the required accuracy and speed. The relationship between bridge arm current, commutation voltage, and trigger pulse based on the commutation progress mechanism after the AC fault is analysed in this paper. A novel CF identification method is presented, which utilises the CF identification factor, enabling fast and high-accurate identification without relying on the value of the extinction angle. The proposed method offers a simpler and more efficient implementation in engineering practice. Finally, the effectiveness of the proposed method is verified in both the standard International Council on Large Electric systems HVDC model and the Hardware in Loop test using practical project parameters. The results demonstrate that the proposed method can accurately and fast identify CF.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12400","citationCount":"0","resultStr":"{\"title\":\"A fast and high-accurate commutation failure identification method for LCC-HVDC system\",\"authors\":\"Jing Feng,&nbsp;Zhijie Liu,&nbsp;Kejun Li,&nbsp;Bingkun Li,&nbsp;Jiachen Li,&nbsp;Liangzi Li\",\"doi\":\"10.1049/hve2.12400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Commutation failure (CF) is one of the most common issues in line-commuted converter-based high voltage direct current systems (LCC-HVDC), leading to critical power system security and stability problems. Accurate and rapid identification of CF is crucial to prevent subsequent CF in HVDC systems. However, the existing CF identification methods are lack of the required accuracy and speed. The relationship between bridge arm current, commutation voltage, and trigger pulse based on the commutation progress mechanism after the AC fault is analysed in this paper. A novel CF identification method is presented, which utilises the CF identification factor, enabling fast and high-accurate identification without relying on the value of the extinction angle. The proposed method offers a simpler and more efficient implementation in engineering practice. Finally, the effectiveness of the proposed method is verified in both the standard International Council on Large Electric systems HVDC model and the Hardware in Loop test using practical project parameters. The results demonstrate that the proposed method can accurately and fast identify CF.</p>\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12400\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12400\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12400","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

换流故障(CF)是基于线路换流器的高压直流系统(LCC-HVDC)中最常见的问题之一,会导致严重的电力系统安全和稳定性问题。准确、快速地识别 CF 对于防止高压直流系统出现后续 CF 至关重要。然而,现有的 CF 识别方法缺乏所需的精度和速度。本文分析了交流故障后基于换向进展机制的桥臂电流、换向电压和触发脉冲之间的关系。本文提出了一种新颖的 CF 识别方法,该方法利用 CF 识别因子,无需依赖消光角值即可实现快速、高精度的识别。所提出的方法在工程实践中实施起来更简单、更高效。最后,利用实际项目参数,在国际大型电力系统委员会标准高压直流模型和硬件在环测试中验证了所提方法的有效性。结果表明,所提出的方法可以准确、快速地识别 CF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast and high-accurate commutation failure identification method for LCC-HVDC system

Commutation failure (CF) is one of the most common issues in line-commuted converter-based high voltage direct current systems (LCC-HVDC), leading to critical power system security and stability problems. Accurate and rapid identification of CF is crucial to prevent subsequent CF in HVDC systems. However, the existing CF identification methods are lack of the required accuracy and speed. The relationship between bridge arm current, commutation voltage, and trigger pulse based on the commutation progress mechanism after the AC fault is analysed in this paper. A novel CF identification method is presented, which utilises the CF identification factor, enabling fast and high-accurate identification without relying on the value of the extinction angle. The proposed method offers a simpler and more efficient implementation in engineering practice. Finally, the effectiveness of the proposed method is verified in both the standard International Council on Large Electric systems HVDC model and the Hardware in Loop test using practical project parameters. The results demonstrate that the proposed method can accurately and fast identify CF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
期刊最新文献
Comparison of corona effect prediction criteria on sphere-plane configuration AC ripple on DC voltage: Experimental and theoretical investigation of the impact on accelerated ageing in electrical insulation Ultrasonic localization method based on Chan‐WLS algorithm for detecting power transformer partial discharge faults by fibre optic F‐P sensing array Modular digital twin modelling method for 10 kV cable lines based on real‐time temperature field inversion Study on the terahertz domain dielectric relaxation response and mechanism of thermal‐oxidative aged cross‐linked polyethylene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1