{"title":"通过与含环氧树脂/氧化锌的聚合物季铵盐交联制备抗菌强力再生纤维素薄膜","authors":"Meng Zhang, Xiaoning Tang, Tian Si, Xueping Wang, Xue Wu","doi":"10.15376/biores.19.2.2149-2159","DOIUrl":null,"url":null,"abstract":"Particulate matter (PM), usually formed as aerosols suspended in atmosphere, is becoming a carrier of viruses and bacteria, accelerating the spread of respiratory diseases. Hence, air filtration devices are widely utilized for removing PM. In this study, a regenerated cellulose (RC) film was prepared with the properties of good mechanical strength, antibacterial, and highly efficient filtration (EF) properties, through cellulose dissolution and further crosslinking with P(AGE-DMDAAC)/ZnO. Results exhibited that the Young’s modulus of the composite membrane was nearly 4.3 GPa. Additionally, the antibacterial performance against Escherichia coli and Staphylococcus aureus, was up to 99.89% and 99.67%, respectively. Meanwhile, RC composite filter exhibited a high PM 2.5 capture efficiency (over 99.91%). This study introduces an interesting approach to produce antibacterial films with the characteristics of notably good mechanical performance and high fine particle EF that can be utilized in a high humidity environment.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"98 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of antibacterial and strong regenerated cellulose film via crosslinking with polymeric quaternary ammonium salt containing epoxy/ZnO\",\"authors\":\"Meng Zhang, Xiaoning Tang, Tian Si, Xueping Wang, Xue Wu\",\"doi\":\"10.15376/biores.19.2.2149-2159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particulate matter (PM), usually formed as aerosols suspended in atmosphere, is becoming a carrier of viruses and bacteria, accelerating the spread of respiratory diseases. Hence, air filtration devices are widely utilized for removing PM. In this study, a regenerated cellulose (RC) film was prepared with the properties of good mechanical strength, antibacterial, and highly efficient filtration (EF) properties, through cellulose dissolution and further crosslinking with P(AGE-DMDAAC)/ZnO. Results exhibited that the Young’s modulus of the composite membrane was nearly 4.3 GPa. Additionally, the antibacterial performance against Escherichia coli and Staphylococcus aureus, was up to 99.89% and 99.67%, respectively. Meanwhile, RC composite filter exhibited a high PM 2.5 capture efficiency (over 99.91%). This study introduces an interesting approach to produce antibacterial films with the characteristics of notably good mechanical performance and high fine particle EF that can be utilized in a high humidity environment.\",\"PeriodicalId\":503414,\"journal\":{\"name\":\"BioResources\",\"volume\":\"98 35\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioResources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15376/biores.19.2.2149-2159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioResources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15376/biores.19.2.2149-2159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation of antibacterial and strong regenerated cellulose film via crosslinking with polymeric quaternary ammonium salt containing epoxy/ZnO
Particulate matter (PM), usually formed as aerosols suspended in atmosphere, is becoming a carrier of viruses and bacteria, accelerating the spread of respiratory diseases. Hence, air filtration devices are widely utilized for removing PM. In this study, a regenerated cellulose (RC) film was prepared with the properties of good mechanical strength, antibacterial, and highly efficient filtration (EF) properties, through cellulose dissolution and further crosslinking with P(AGE-DMDAAC)/ZnO. Results exhibited that the Young’s modulus of the composite membrane was nearly 4.3 GPa. Additionally, the antibacterial performance against Escherichia coli and Staphylococcus aureus, was up to 99.89% and 99.67%, respectively. Meanwhile, RC composite filter exhibited a high PM 2.5 capture efficiency (over 99.91%). This study introduces an interesting approach to produce antibacterial films with the characteristics of notably good mechanical performance and high fine particle EF that can be utilized in a high humidity environment.