Amol Dattatray Dhaygude, Gaurav Kumar Ameta, Ihtiram Raza Khan, Pavitar Parkash Singh, Renato R. Maaliw III, Natrayan Lakshmaiya, Mohammad Shabaz, Muhammad Attique Khan, Hany S. Hussein, Hammam Alshazly
{"title":"基于知识的深度学习系统,用于对阿尔茨海默病进行多任务学习分类","authors":"Amol Dattatray Dhaygude, Gaurav Kumar Ameta, Ihtiram Raza Khan, Pavitar Parkash Singh, Renato R. Maaliw III, Natrayan Lakshmaiya, Mohammad Shabaz, Muhammad Attique Khan, Hany S. Hussein, Hammam Alshazly","doi":"10.1049/cit2.12291","DOIUrl":null,"url":null,"abstract":"<p>Deep learning has recently become a viable approach for classifying Alzheimer's disease (AD) in medical imaging. However, existing models struggle to efficiently extract features from medical images and may squander additional information resources for illness classification. To address these issues, a deep three-dimensional convolutional neural network incorporating multi-task learning and attention mechanisms is proposed. An upgraded primary C3D network is utilised to create rougher low-level feature maps. It introduces a new convolution block that focuses on the structural aspects of the magnetic resonance imaging image and another block that extracts attention weights unique to certain pixel positions in the feature map and multiplies them with the feature map output. Then, several fully connected layers are used to achieve multi-task learning, generating three outputs, including the primary classification task. The other two outputs employ backpropagation during training to improve the primary classification job. Experimental findings show that the authors’ proposed method outperforms current approaches for classifying AD, achieving enhanced classification accuracy and other indicators on the Alzheimer's disease Neuroimaging Initiative dataset. The authors demonstrate promise for future disease classification studies.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"9 4","pages":"805-820"},"PeriodicalIF":8.4000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12291","citationCount":"0","resultStr":"{\"title\":\"Knowledge-based deep learning system for classifying Alzheimer's disease for multi-task learning\",\"authors\":\"Amol Dattatray Dhaygude, Gaurav Kumar Ameta, Ihtiram Raza Khan, Pavitar Parkash Singh, Renato R. Maaliw III, Natrayan Lakshmaiya, Mohammad Shabaz, Muhammad Attique Khan, Hany S. Hussein, Hammam Alshazly\",\"doi\":\"10.1049/cit2.12291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep learning has recently become a viable approach for classifying Alzheimer's disease (AD) in medical imaging. However, existing models struggle to efficiently extract features from medical images and may squander additional information resources for illness classification. To address these issues, a deep three-dimensional convolutional neural network incorporating multi-task learning and attention mechanisms is proposed. An upgraded primary C3D network is utilised to create rougher low-level feature maps. It introduces a new convolution block that focuses on the structural aspects of the magnetic resonance imaging image and another block that extracts attention weights unique to certain pixel positions in the feature map and multiplies them with the feature map output. Then, several fully connected layers are used to achieve multi-task learning, generating three outputs, including the primary classification task. The other two outputs employ backpropagation during training to improve the primary classification job. Experimental findings show that the authors’ proposed method outperforms current approaches for classifying AD, achieving enhanced classification accuracy and other indicators on the Alzheimer's disease Neuroimaging Initiative dataset. The authors demonstrate promise for future disease classification studies.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"9 4\",\"pages\":\"805-820\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12291\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12291\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12291","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
最近,深度学习已成为医学影像中阿尔茨海默病(AD)分类的一种可行方法。然而,现有模型难以有效地从医学图像中提取特征,可能会浪费用于疾病分类的额外信息资源。为了解决这些问题,我们提出了一种融合了多任务学习和注意力机制的深度三维卷积神经网络。利用升级后的初级 C3D 网络来创建更粗糙的低级特征图。它引入了一个新的卷积块,重点关注磁共振成像图像的结构方面,另一个卷积块则提取特征图中某些像素位置特有的注意力权重,并将其与特征图输出相乘。然后,使用多个全连接层实现多任务学习,产生三个输出,包括主要分类任务。另外两个输出在训练过程中采用反向传播,以改进主要分类工作。实验结果表明,作者提出的方法优于当前的 AD 分类方法,在阿尔茨海默病神经影像倡议数据集上实现了更高的分类准确率和其他指标。作者展示了未来疾病分类研究的前景。
Knowledge-based deep learning system for classifying Alzheimer's disease for multi-task learning
Deep learning has recently become a viable approach for classifying Alzheimer's disease (AD) in medical imaging. However, existing models struggle to efficiently extract features from medical images and may squander additional information resources for illness classification. To address these issues, a deep three-dimensional convolutional neural network incorporating multi-task learning and attention mechanisms is proposed. An upgraded primary C3D network is utilised to create rougher low-level feature maps. It introduces a new convolution block that focuses on the structural aspects of the magnetic resonance imaging image and another block that extracts attention weights unique to certain pixel positions in the feature map and multiplies them with the feature map output. Then, several fully connected layers are used to achieve multi-task learning, generating three outputs, including the primary classification task. The other two outputs employ backpropagation during training to improve the primary classification job. Experimental findings show that the authors’ proposed method outperforms current approaches for classifying AD, achieving enhanced classification accuracy and other indicators on the Alzheimer's disease Neuroimaging Initiative dataset. The authors demonstrate promise for future disease classification studies.
期刊介绍:
CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.