Koopman 容错模型预测控制

Mohammadhosein Bakhtiaridoust, Meysam Yadegar, Fatemeh Jahangiri
{"title":"Koopman 容错模型预测控制","authors":"Mohammadhosein Bakhtiaridoust, Meysam Yadegar, Fatemeh Jahangiri","doi":"10.1049/cth2.12629","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel data‐driven approach to develop a fault‐tolerant model predictive controller (MPC) for non‐linear systems. By adopting a Koopman operator‐theoretic perspective, the proposed method leverages historical data from the system to construct a data‐driven model that captures the non‐linear behaviour and fault characteristics. The fault influence is addressed through an online estimation of a time‐varying Koopman predictor, which allows for adjusting the MPC control law to counteract the fault effects. This estimation is performed in a higher dimensional Koopman feature space, where the dynamics behave linearly. As a result, the non‐linear fault‐tolerant MPC optimization problem can be replaced with a more practical and feasible linear time‐varying one using the approximated Koopman predictor. Moreover, by incorporating the online update procedure, the time‐varying Koopman predictor can represent the dynamics of the faulty system. Hence, the controller can adapt and compensate for the faults in real‐time, integrating the fault diagnosis module in the MPC framework and eliminating the need for a separate fault detection unit. Finally, the efficacy of the proposed approach is demonstrated through case study results, which highlight the ability of the controller to mitigate faults and maintain desired system behaviour.","PeriodicalId":502998,"journal":{"name":"IET Control Theory & Applications","volume":" 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Koopman fault‐tolerant model predictive control\",\"authors\":\"Mohammadhosein Bakhtiaridoust, Meysam Yadegar, Fatemeh Jahangiri\",\"doi\":\"10.1049/cth2.12629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel data‐driven approach to develop a fault‐tolerant model predictive controller (MPC) for non‐linear systems. By adopting a Koopman operator‐theoretic perspective, the proposed method leverages historical data from the system to construct a data‐driven model that captures the non‐linear behaviour and fault characteristics. The fault influence is addressed through an online estimation of a time‐varying Koopman predictor, which allows for adjusting the MPC control law to counteract the fault effects. This estimation is performed in a higher dimensional Koopman feature space, where the dynamics behave linearly. As a result, the non‐linear fault‐tolerant MPC optimization problem can be replaced with a more practical and feasible linear time‐varying one using the approximated Koopman predictor. Moreover, by incorporating the online update procedure, the time‐varying Koopman predictor can represent the dynamics of the faulty system. Hence, the controller can adapt and compensate for the faults in real‐time, integrating the fault diagnosis module in the MPC framework and eliminating the need for a separate fault detection unit. Finally, the efficacy of the proposed approach is demonstrated through case study results, which highlight the ability of the controller to mitigate faults and maintain desired system behaviour.\",\"PeriodicalId\":502998,\"journal\":{\"name\":\"IET Control Theory & Applications\",\"volume\":\" 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/cth2.12629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/cth2.12629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新颖的数据驱动方法,用于开发非线性系统的容错模型预测控制器(MPC)。通过采用 Koopman 算子理论视角,所提出的方法利用系统的历史数据来构建数据驱动模型,从而捕捉非线性行为和故障特征。故障影响可通过在线估计时变库普曼预测器来解决,从而调整 MPC 控制法则以抵消故障影响。这种估计是在高维 Koopman 特征空间中进行的,其中的动态表现为线性。因此,利用近似库普曼预测器,非线性容错 MPC 优化问题可被更实用、更可行的线性时变问题所取代。此外,通过采用在线更新程序,时变 Koopman 预测器可以代表故障系统的动态。因此,控制器可以实时适应和补偿故障,将故障诊断模块集成到 MPC 框架中,无需单独的故障检测单元。最后,通过案例研究结果展示了所提方法的功效,突出了控制器缓解故障和保持理想系统行为的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Koopman fault‐tolerant model predictive control
This paper introduces a novel data‐driven approach to develop a fault‐tolerant model predictive controller (MPC) for non‐linear systems. By adopting a Koopman operator‐theoretic perspective, the proposed method leverages historical data from the system to construct a data‐driven model that captures the non‐linear behaviour and fault characteristics. The fault influence is addressed through an online estimation of a time‐varying Koopman predictor, which allows for adjusting the MPC control law to counteract the fault effects. This estimation is performed in a higher dimensional Koopman feature space, where the dynamics behave linearly. As a result, the non‐linear fault‐tolerant MPC optimization problem can be replaced with a more practical and feasible linear time‐varying one using the approximated Koopman predictor. Moreover, by incorporating the online update procedure, the time‐varying Koopman predictor can represent the dynamics of the faulty system. Hence, the controller can adapt and compensate for the faults in real‐time, integrating the fault diagnosis module in the MPC framework and eliminating the need for a separate fault detection unit. Finally, the efficacy of the proposed approach is demonstrated through case study results, which highlight the ability of the controller to mitigate faults and maintain desired system behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Innovative hull cleaning robot design and control by Laguerre base model predictive control for impedance and vibration management A hybrid energy storage array group control strategy for wind power smoothing Optimal data injection attack design for spacecraft systems via a model free Q‐learning approach Smart line planning method for power transmission based on D3QN‐PER algorithm Lightweight environment sensing algorithm for intelligent driving based on improved YOLOv7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1