Nathalie Guigues, Emrah Uysal, Sandrine Raveau, Jérémie Magar, Gabriel Billon, Joonas Kahiluoto, Rudolf J. Schneider, Lokman Liv, Serap Gençtürk Tosun, Gaëlle Canteau, Béatrice Lalere
{"title":"验证水质监测替代工具的启示:现场检测包、便携式设备和连续测量设备的案例","authors":"Nathalie Guigues, Emrah Uysal, Sandrine Raveau, Jérémie Magar, Gabriel Billon, Joonas Kahiluoto, Rudolf J. Schneider, Lokman Liv, Serap Gençtürk Tosun, Gaëlle Canteau, Béatrice Lalere","doi":"10.1007/s00769-023-01570-x","DOIUrl":null,"url":null,"abstract":"<div><p>Alternative Tools (AT) such as on-site test kits, on-site portable devices and continuous measuring devices, are useful to improve water quality assessment under EU directives, and water treatment processes, thus contributing to improving water management, as well as get insights on the dynamic of pollutants within water bodies. Although these tools have clear advantages (e.g. fast response allowing for real-time monitoring, ease-of-use, lower cost), they are perceived as less reliable than conventional analytical methods. Their alternative nature, innovative status, and non-standard operation mode require specific validation strategies that differ significantly from those of conventional analytical methods. Nevertheless, the validation of ATs, especially on-site test kits, portable devices and continuous measuring devices for water quality monitoring is crucial to support their acceptance, promote their use and make their application sustainable. In this paper, a validation procedure in 4 steps is proposed: (1) Comprehensive description of the AT; (2) Assessment of intrinsic metrological performance and operational factors within a single laboratory; (3) Assessment of inter-laboratory performances through an inter-laboratory comparison and, (4) Demonstration of the equivalence of results between the AT and a reference method. This paper discusses each step of the validation procedure, and examples to illustrate critical issues are provided.</p></div>","PeriodicalId":454,"journal":{"name":"Accreditation and Quality Assurance","volume":"29 2","pages":"163 - 173"},"PeriodicalIF":0.8000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights on the validation of alternative tools for water quality monitoring: the case of on-site test kits, portable devices and continuous measuring devices\",\"authors\":\"Nathalie Guigues, Emrah Uysal, Sandrine Raveau, Jérémie Magar, Gabriel Billon, Joonas Kahiluoto, Rudolf J. Schneider, Lokman Liv, Serap Gençtürk Tosun, Gaëlle Canteau, Béatrice Lalere\",\"doi\":\"10.1007/s00769-023-01570-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alternative Tools (AT) such as on-site test kits, on-site portable devices and continuous measuring devices, are useful to improve water quality assessment under EU directives, and water treatment processes, thus contributing to improving water management, as well as get insights on the dynamic of pollutants within water bodies. Although these tools have clear advantages (e.g. fast response allowing for real-time monitoring, ease-of-use, lower cost), they are perceived as less reliable than conventional analytical methods. Their alternative nature, innovative status, and non-standard operation mode require specific validation strategies that differ significantly from those of conventional analytical methods. Nevertheless, the validation of ATs, especially on-site test kits, portable devices and continuous measuring devices for water quality monitoring is crucial to support their acceptance, promote their use and make their application sustainable. In this paper, a validation procedure in 4 steps is proposed: (1) Comprehensive description of the AT; (2) Assessment of intrinsic metrological performance and operational factors within a single laboratory; (3) Assessment of inter-laboratory performances through an inter-laboratory comparison and, (4) Demonstration of the equivalence of results between the AT and a reference method. This paper discusses each step of the validation procedure, and examples to illustrate critical issues are provided.</p></div>\",\"PeriodicalId\":454,\"journal\":{\"name\":\"Accreditation and Quality Assurance\",\"volume\":\"29 2\",\"pages\":\"163 - 173\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accreditation and Quality Assurance\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00769-023-01570-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accreditation and Quality Assurance","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00769-023-01570-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Insights on the validation of alternative tools for water quality monitoring: the case of on-site test kits, portable devices and continuous measuring devices
Alternative Tools (AT) such as on-site test kits, on-site portable devices and continuous measuring devices, are useful to improve water quality assessment under EU directives, and water treatment processes, thus contributing to improving water management, as well as get insights on the dynamic of pollutants within water bodies. Although these tools have clear advantages (e.g. fast response allowing for real-time monitoring, ease-of-use, lower cost), they are perceived as less reliable than conventional analytical methods. Their alternative nature, innovative status, and non-standard operation mode require specific validation strategies that differ significantly from those of conventional analytical methods. Nevertheless, the validation of ATs, especially on-site test kits, portable devices and continuous measuring devices for water quality monitoring is crucial to support their acceptance, promote their use and make their application sustainable. In this paper, a validation procedure in 4 steps is proposed: (1) Comprehensive description of the AT; (2) Assessment of intrinsic metrological performance and operational factors within a single laboratory; (3) Assessment of inter-laboratory performances through an inter-laboratory comparison and, (4) Demonstration of the equivalence of results between the AT and a reference method. This paper discusses each step of the validation procedure, and examples to illustrate critical issues are provided.
期刊介绍:
Accreditation and Quality Assurance has established itself as the leading information and discussion forum for all aspects relevant to quality, transparency and reliability of measurement results in chemical and biological sciences. The journal serves the information needs of researchers, practitioners and decision makers dealing with quality assurance and quality management, including the development and application of metrological principles and concepts such as traceability or measurement uncertainty in the following fields: environment, nutrition, consumer protection, geology, metallurgy, pharmacy, forensics, clinical chemistry and laboratory medicine, and microbiology.