用于模拟表面波的物理信息神经算子

M. Mathias, Caio Fabricio Deberaldini Netto, Felipe Marino Moreno, Jefferson Fialho Coelho, Lucas Palmiro de Freitas, Marcel Rodrigues de Barros, Pedro C. Mello, Marcelo Dottori, F. G. Cozman, Anna Helena Reali Costa, Alberto Costa Nogueira Junior, E. Gomi, E. Tannuri
{"title":"用于模拟表面波的物理信息神经算子","authors":"M. Mathias, Caio Fabricio Deberaldini Netto, Felipe Marino Moreno, Jefferson Fialho Coelho, Lucas Palmiro de Freitas, Marcel Rodrigues de Barros, Pedro C. Mello, Marcelo Dottori, F. G. Cozman, Anna Helena Reali Costa, Alberto Costa Nogueira Junior, E. Gomi, E. Tannuri","doi":"10.1115/1.4064676","DOIUrl":null,"url":null,"abstract":"\n We develop and implement a Neural Operator (NOp) to predict the evolution of waves on the surface of water. The NOp uses a Graph Neural Network (GNN) to connect randomly sampled points on the water surface and exchange information between them to make the prediction. Our main contribution is adding physical knowledge to the implementation, which allows the model to be more general and able to be used in domains of different geometries with no retraining. Our implementation also takes advantage of the fact that the governing equations are independent of rotation and translation to make training easier. In this work, the model is trained with data from a single domain with fixed dimensions and evaluated in domains of different dimensions with little impact to performance.","PeriodicalId":509714,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A PHYSICS-INFORMED NEURAL OPERATOR FOR THE SIMULATION OF SURFACE WAVES\",\"authors\":\"M. Mathias, Caio Fabricio Deberaldini Netto, Felipe Marino Moreno, Jefferson Fialho Coelho, Lucas Palmiro de Freitas, Marcel Rodrigues de Barros, Pedro C. Mello, Marcelo Dottori, F. G. Cozman, Anna Helena Reali Costa, Alberto Costa Nogueira Junior, E. Gomi, E. Tannuri\",\"doi\":\"10.1115/1.4064676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We develop and implement a Neural Operator (NOp) to predict the evolution of waves on the surface of water. The NOp uses a Graph Neural Network (GNN) to connect randomly sampled points on the water surface and exchange information between them to make the prediction. Our main contribution is adding physical knowledge to the implementation, which allows the model to be more general and able to be used in domains of different geometries with no retraining. Our implementation also takes advantage of the fact that the governing equations are independent of rotation and translation to make training easier. In this work, the model is trained with data from a single domain with fixed dimensions and evaluated in domains of different dimensions with little impact to performance.\",\"PeriodicalId\":509714,\"journal\":{\"name\":\"Journal of Offshore Mechanics and Arctic Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Offshore Mechanics and Arctic Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发并实施了一种神经运算器(NOp),用于预测水面波浪的演变。NOp 使用图神经网络 (GNN) 连接水面上的随机取样点,并在它们之间交换信息,从而进行预测。我们的主要贡献是在实现过程中添加了物理知识,这使得模型更具通用性,能够用于不同几何形状的领域,且无需重新训练。我们的实现还利用了控制方程与旋转和平移无关这一事实,使训练更加容易。在这项工作中,我们使用来自固定维度的单一领域的数据对模型进行了训练,并在不同维度的领域中对模型进行了评估,结果对性能影响很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A PHYSICS-INFORMED NEURAL OPERATOR FOR THE SIMULATION OF SURFACE WAVES
We develop and implement a Neural Operator (NOp) to predict the evolution of waves on the surface of water. The NOp uses a Graph Neural Network (GNN) to connect randomly sampled points on the water surface and exchange information between them to make the prediction. Our main contribution is adding physical knowledge to the implementation, which allows the model to be more general and able to be used in domains of different geometries with no retraining. Our implementation also takes advantage of the fact that the governing equations are independent of rotation and translation to make training easier. In this work, the model is trained with data from a single domain with fixed dimensions and evaluated in domains of different dimensions with little impact to performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Barriers to data analytics for energy efficiency in the maritime industry Complexity analysis using graph models for conflict resolution for autonomous ships in complex situations CAPITAL DESTRUCTION – WHAT IS THE COST OF CARBON-NEUTRALITY IN SHIPPING COMPETITION? PREDICTION FOR GLOBAL WHIPPING RESPONSES OF A LARGE CRUISE SHIP UNDER UNPRECEDENTED SEA CONDITIONS USING AN LSTM BASED ENCODER-DECODER MODEL Techno-economic analysis of electrofuel as a shipping fuel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1