存在霍尔和离子滑移电流的倾斜磁场时微通道中瞬态 MHD 自由对流的计算分析

B. Jha, P. Malgwi
{"title":"存在霍尔和离子滑移电流的倾斜磁场时微通道中瞬态 MHD 自由对流的计算分析","authors":"B. Jha, P. Malgwi","doi":"10.1177/23977914231214860","DOIUrl":null,"url":null,"abstract":"The present analysis is concerned with the effect of magnetic field inclination on transient MHD flow of Newtonian viscous fluid in a vertical microchannel with the consideration of Hall and ion slip currents as well as induced magnetic field effects. Obtained dimensional partial differential equation are rendered dimensionless by employing suitable parameters and thereafter solved numerically in MATLAB. Relevant actions of parameters on different flow features are depicted explicitly and also using Tables for various applicable parameters. Analysis in this direction is relevant in many MHD controlled applications. Results obtained from the present analysis shows that at the early stages of time and in the simultaneous occurrence of inclined magnetic field as well as Hall and ion slip currents, velocity and induced magnetic field behavior are found to be oscillatory all through the microchannel domain.","PeriodicalId":516661,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational analysis on transient MHD free convection flow in a microchannel in presence of inclined magnetic field with Hall and ion slip current\",\"authors\":\"B. Jha, P. Malgwi\",\"doi\":\"10.1177/23977914231214860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present analysis is concerned with the effect of magnetic field inclination on transient MHD flow of Newtonian viscous fluid in a vertical microchannel with the consideration of Hall and ion slip currents as well as induced magnetic field effects. Obtained dimensional partial differential equation are rendered dimensionless by employing suitable parameters and thereafter solved numerically in MATLAB. Relevant actions of parameters on different flow features are depicted explicitly and also using Tables for various applicable parameters. Analysis in this direction is relevant in many MHD controlled applications. Results obtained from the present analysis shows that at the early stages of time and in the simultaneous occurrence of inclined magnetic field as well as Hall and ion slip currents, velocity and induced magnetic field behavior are found to be oscillatory all through the microchannel domain.\",\"PeriodicalId\":516661,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/23977914231214860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914231214860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本分析涉及磁场倾斜对垂直微通道中牛顿粘性流体瞬态 MHD 流动的影响,并考虑了霍尔和离子滑移电流以及诱导磁场效应。通过采用合适的参数,得到的偏微分方程变得无量纲化,然后在 MATLAB 中进行数值求解。参数对不同流动特征的相关作用都有明确的描述,同时还使用了各种适用参数的表格。该方向的分析与许多 MHD 控制应用相关。分析结果表明,在倾斜磁场以及霍尔和离子滑动电流同时出现的早期阶段,整个微通道域的速度和感应磁场行为都是振荡的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational analysis on transient MHD free convection flow in a microchannel in presence of inclined magnetic field with Hall and ion slip current
The present analysis is concerned with the effect of magnetic field inclination on transient MHD flow of Newtonian viscous fluid in a vertical microchannel with the consideration of Hall and ion slip currents as well as induced magnetic field effects. Obtained dimensional partial differential equation are rendered dimensionless by employing suitable parameters and thereafter solved numerically in MATLAB. Relevant actions of parameters on different flow features are depicted explicitly and also using Tables for various applicable parameters. Analysis in this direction is relevant in many MHD controlled applications. Results obtained from the present analysis shows that at the early stages of time and in the simultaneous occurrence of inclined magnetic field as well as Hall and ion slip currents, velocity and induced magnetic field behavior are found to be oscillatory all through the microchannel domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entropy generation analysis of mixed-convective flow of magnetohydrodynamic reactive couple stress MWCNT-Ag/C2H6O2 hybrid nanofluid with variable properties in a porous vertical channel Improving the performance of cutting fluids by using ZnO and ZrO2 nanoparticles Simulation of magneto-nano-bioconvective coating flow with blowing and multiple slip effects Investigating the effect of external surface layer on high pressure phase evolution in a single crystal: A mechanics-based phase field study Physical characteristics of variable thermal conductivity and MHD flow across a continually stretched sheet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1