构造断层与岩浆系统的交汇促进了青藏高原东南部腾冲火山区周围的大震群发生

Geology Pub Date : 2024-02-06 DOI:10.1130/g51796.1
Min Liu, Yen Joe Tan, Xinglin Lei, Hongyi Li, Yunpeng Zhang, Weitao Wang
{"title":"构造断层与岩浆系统的交汇促进了青藏高原东南部腾冲火山区周围的大震群发生","authors":"Min Liu, Yen Joe Tan, Xinglin Lei, Hongyi Li, Yunpeng Zhang, Weitao Wang","doi":"10.1130/g51796.1","DOIUrl":null,"url":null,"abstract":"Volcanic regions commonly host swarms comprising small to moderate-sized earthquakes while tectonic faults host mostly mainshock-aftershock sequences that can include very large earthquakes. In the southeastern Tibetan Plateau, large tectonic faults formed by the collision between the Indian and Eurasian plates intersect with the intraplate Tengchong volcanic field, and the seismic behavior of such an environment remains unclear. Here, we built a deep-learning-based high-precision earthquake catalog for the Tengchong volcanic field and found that (1) ∼59% of the seismicity occurred as swarms but on faults aligned with the regional tectonic stress field; (2) all swarms contained fluid-diffusion-like migration fronts, with some occurring where high CO2 emissions have been detected; and (3) a year-long swarm, including two ML 5.2 earthquakes within two months, revealed complex fluid-fault interaction. Combined with the historical occurrences of M >6 earthquake swarms around the Tengchong volcanic field, our observations suggest potential increased likelihood of swarms with large-magnitude earthquakes where large tectonic faults and magmatic systems intersect.","PeriodicalId":503125,"journal":{"name":"Geology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersection between tectonic faults and magmatic systems promotes swarms with large-magnitude earthquakes around the Tengchong volcanic field, southeastern Tibetan Plateau\",\"authors\":\"Min Liu, Yen Joe Tan, Xinglin Lei, Hongyi Li, Yunpeng Zhang, Weitao Wang\",\"doi\":\"10.1130/g51796.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volcanic regions commonly host swarms comprising small to moderate-sized earthquakes while tectonic faults host mostly mainshock-aftershock sequences that can include very large earthquakes. In the southeastern Tibetan Plateau, large tectonic faults formed by the collision between the Indian and Eurasian plates intersect with the intraplate Tengchong volcanic field, and the seismic behavior of such an environment remains unclear. Here, we built a deep-learning-based high-precision earthquake catalog for the Tengchong volcanic field and found that (1) ∼59% of the seismicity occurred as swarms but on faults aligned with the regional tectonic stress field; (2) all swarms contained fluid-diffusion-like migration fronts, with some occurring where high CO2 emissions have been detected; and (3) a year-long swarm, including two ML 5.2 earthquakes within two months, revealed complex fluid-fault interaction. Combined with the historical occurrences of M >6 earthquake swarms around the Tengchong volcanic field, our observations suggest potential increased likelihood of swarms with large-magnitude earthquakes where large tectonic faults and magmatic systems intersect.\",\"PeriodicalId\":503125,\"journal\":{\"name\":\"Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1130/g51796.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/g51796.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

火山地区通常会发生由中小规模地震组成的地震群,而构造断层则大多会发生包括特大地震在内的主震-余震序列。在青藏高原东南部,印度板块和欧亚板块碰撞形成的大型构造断层与板块内的腾冲火山场相交,这种环境下的地震行为尚不清楚。在此,我们建立了基于深度学习的腾冲火山活动场高精度地震目录,并发现:(1)59%的地震活动以震群形式发生,但发生在与区域构造应力场一致的断层上;(2)所有震群都包含流体扩散样迁移前沿,其中一些发生在已探测到高二氧化碳排放的地方;(3)一个长达一年的震群,包括两个月内的两次 ML 5.2 地震,揭示了复杂的流体-断层相互作用。结合历史上腾冲火山区周围发生的 M > 6 级地震群,我们的观测结果表明,在大型构造断层和岩浆系统交汇的地方,发生大震级地震群的可能性可能会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intersection between tectonic faults and magmatic systems promotes swarms with large-magnitude earthquakes around the Tengchong volcanic field, southeastern Tibetan Plateau
Volcanic regions commonly host swarms comprising small to moderate-sized earthquakes while tectonic faults host mostly mainshock-aftershock sequences that can include very large earthquakes. In the southeastern Tibetan Plateau, large tectonic faults formed by the collision between the Indian and Eurasian plates intersect with the intraplate Tengchong volcanic field, and the seismic behavior of such an environment remains unclear. Here, we built a deep-learning-based high-precision earthquake catalog for the Tengchong volcanic field and found that (1) ∼59% of the seismicity occurred as swarms but on faults aligned with the regional tectonic stress field; (2) all swarms contained fluid-diffusion-like migration fronts, with some occurring where high CO2 emissions have been detected; and (3) a year-long swarm, including two ML 5.2 earthquakes within two months, revealed complex fluid-fault interaction. Combined with the historical occurrences of M >6 earthquake swarms around the Tengchong volcanic field, our observations suggest potential increased likelihood of swarms with large-magnitude earthquakes where large tectonic faults and magmatic systems intersect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Globally significant mass of terrestrial organic carbon efficiently transported by canyon-flushing turbidity currents Generation of Archean TTGs via sluggish subduction Early Mississippian global δ13C excursion is not a diagenetic artifact Fingerprinting enhanced floodplain reworking during the Paleocene−Eocene Thermal Maximum in the Southern Pyrenees (Spain): Implications for channel dynamics and carbon burial Late Oligocene−Miocene evolution of deep-water circulation in the abyssal South China Sea: Insights from Nd isotopes of fossil fish teeth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1