I-CVSSDM:用于灾害管理的物联网计算机视觉安全系统

Parameswaran Ramesh, Vidhya N, Panjavarnam B, Shabana Parveen M, Deepak Athipan A M B, B. P. T. V
{"title":"I-CVSSDM:用于灾害管理的物联网计算机视觉安全系统","authors":"Parameswaran Ramesh, Vidhya N, Panjavarnam B, Shabana Parveen M, Deepak Athipan A M B, B. P. T. V","doi":"10.4108/eetiot.5046","DOIUrl":null,"url":null,"abstract":"INTRODUCTION: Around the world, individuals experience flooding more frequently than any other natural calamity. \nOBJECTIVES: The motivation behind this research is to provide an Internet of Things (IoT)-based early warning assistive system to enable monitoring of water logging levels in flood-affected areas. Further, the SSD-MobiNET V2 model is used in the developed system to detect and classify the objects that prevail in the flood zone. \nMETHODS: The developed research is validated in a real-time scenario. To enable this, a customized embedded module is designed and developed using the Raspberry Pi 4 model B processor. The module uses (i) a pi-camera to capture the objects and (ii) an ultrasonic sensor to measure the water level in the flood area. \nRESULTS: The measured data and detected objects are periodically ported to the cloud and stored in the cloud database to enable remote monitoring and further processing. \nCONCLUSION: Also, whenever the level of waterlogged exceeds the threshold, an alert is sent to the concerned authorities in the form of an SMS, a phone call, or an email.","PeriodicalId":506477,"journal":{"name":"EAI Endorsed Transactions on Internet of Things","volume":"71 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"I-CVSSDM: IoT Enabled Computer Vision Safety System for Disaster Management\",\"authors\":\"Parameswaran Ramesh, Vidhya N, Panjavarnam B, Shabana Parveen M, Deepak Athipan A M B, B. P. T. V\",\"doi\":\"10.4108/eetiot.5046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"INTRODUCTION: Around the world, individuals experience flooding more frequently than any other natural calamity. \\nOBJECTIVES: The motivation behind this research is to provide an Internet of Things (IoT)-based early warning assistive system to enable monitoring of water logging levels in flood-affected areas. Further, the SSD-MobiNET V2 model is used in the developed system to detect and classify the objects that prevail in the flood zone. \\nMETHODS: The developed research is validated in a real-time scenario. To enable this, a customized embedded module is designed and developed using the Raspberry Pi 4 model B processor. The module uses (i) a pi-camera to capture the objects and (ii) an ultrasonic sensor to measure the water level in the flood area. \\nRESULTS: The measured data and detected objects are periodically ported to the cloud and stored in the cloud database to enable remote monitoring and further processing. \\nCONCLUSION: Also, whenever the level of waterlogged exceeds the threshold, an alert is sent to the concerned authorities in the form of an SMS, a phone call, or an email.\",\"PeriodicalId\":506477,\"journal\":{\"name\":\"EAI Endorsed Transactions on Internet of Things\",\"volume\":\"71 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eetiot.5046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetiot.5046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引言:在世界各地,人们遭遇洪灾的频率高于其他自然灾害。目标:这项研究的动机是提供一个基于物联网(IoT)的预警辅助系统,以监测受洪水影响地区的积水程度。此外,开发的系统还使用了 SSD-MobiNET V2 模型来检测洪水区域内的物体并对其进行分类。方法:所开发的研究在实时场景中进行了验证。为此,使用 Raspberry Pi 4 B 型处理器设计和开发了一个定制的嵌入式模块。该模块使用(i) pi 摄像头捕捉物体,(ii) 超声波传感器测量洪水区域的水位。结果:测量到的数据和检测到的物体会定期移植到云端,并存储在云数据库中,以便进行远程监控和进一步处理。结论:此外,只要内涝水位超过阈值,就会以短信、电话或电子邮件的形式向有关部门发出警报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
I-CVSSDM: IoT Enabled Computer Vision Safety System for Disaster Management
INTRODUCTION: Around the world, individuals experience flooding more frequently than any other natural calamity. OBJECTIVES: The motivation behind this research is to provide an Internet of Things (IoT)-based early warning assistive system to enable monitoring of water logging levels in flood-affected areas. Further, the SSD-MobiNET V2 model is used in the developed system to detect and classify the objects that prevail in the flood zone. METHODS: The developed research is validated in a real-time scenario. To enable this, a customized embedded module is designed and developed using the Raspberry Pi 4 model B processor. The module uses (i) a pi-camera to capture the objects and (ii) an ultrasonic sensor to measure the water level in the flood area. RESULTS: The measured data and detected objects are periodically ported to the cloud and stored in the cloud database to enable remote monitoring and further processing. CONCLUSION: Also, whenever the level of waterlogged exceeds the threshold, an alert is sent to the concerned authorities in the form of an SMS, a phone call, or an email.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust GAN-Based CNN Model as Generative AI Application for Deepfake Detection Identification of Lithology from Well Log Data Using Machine Learning Crime Prediction using Machine Learning Crime Prediction using Machine Learning Circumventing Stragglers and Staleness in Distributed CNN using LSTM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1