Catarina Ladeiro, Francisca Nunes, Mariana Trindade, Jose M. Costa
{"title":"液态金属印刷生产的 Al-4008 中老化热处理的影响","authors":"Catarina Ladeiro, Francisca Nunes, Mariana Trindade, Jose M. Costa","doi":"10.24840/2183-6493_0010-001_002060","DOIUrl":null,"url":null,"abstract":"In today's world, additive manufacturing (AM) is one of the most popular technologies and has the potential to revolutionize the manufacturing industry. As one of the most recent advances in this industry, liquid metal printing has a growing value in the engineering field. This study aims to evaluate the effect of two heat treatment conditions in an Al-4008 alloy produced by this technique in the microstructure and mechanical properties. It was concluded that the heat treatment (HT) enhances the Si particle coalescence and Fe-rich intermetallic compound precipitation, increasing the sample hardness significantly (50%). Density analysis showed a slight porosity decrease with HT. Tensile tests indicated heat-treated, same-directionally pulled samples exhibited brittleness compared to as-printed ones, while HT increased both yield strength (245 MPa) and ultimate tensile strength (294 MPa).","PeriodicalId":36339,"journal":{"name":"U.Porto Journal of Engineering","volume":"57 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Aging Heat Treatment in an Al-4008 Produced by Liquid Metal Printing\",\"authors\":\"Catarina Ladeiro, Francisca Nunes, Mariana Trindade, Jose M. Costa\",\"doi\":\"10.24840/2183-6493_0010-001_002060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's world, additive manufacturing (AM) is one of the most popular technologies and has the potential to revolutionize the manufacturing industry. As one of the most recent advances in this industry, liquid metal printing has a growing value in the engineering field. This study aims to evaluate the effect of two heat treatment conditions in an Al-4008 alloy produced by this technique in the microstructure and mechanical properties. It was concluded that the heat treatment (HT) enhances the Si particle coalescence and Fe-rich intermetallic compound precipitation, increasing the sample hardness significantly (50%). Density analysis showed a slight porosity decrease with HT. Tensile tests indicated heat-treated, same-directionally pulled samples exhibited brittleness compared to as-printed ones, while HT increased both yield strength (245 MPa) and ultimate tensile strength (294 MPa).\",\"PeriodicalId\":36339,\"journal\":{\"name\":\"U.Porto Journal of Engineering\",\"volume\":\"57 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"U.Porto Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24840/2183-6493_0010-001_002060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"U.Porto Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24840/2183-6493_0010-001_002060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Effect of Aging Heat Treatment in an Al-4008 Produced by Liquid Metal Printing
In today's world, additive manufacturing (AM) is one of the most popular technologies and has the potential to revolutionize the manufacturing industry. As one of the most recent advances in this industry, liquid metal printing has a growing value in the engineering field. This study aims to evaluate the effect of two heat treatment conditions in an Al-4008 alloy produced by this technique in the microstructure and mechanical properties. It was concluded that the heat treatment (HT) enhances the Si particle coalescence and Fe-rich intermetallic compound precipitation, increasing the sample hardness significantly (50%). Density analysis showed a slight porosity decrease with HT. Tensile tests indicated heat-treated, same-directionally pulled samples exhibited brittleness compared to as-printed ones, while HT increased both yield strength (245 MPa) and ultimate tensile strength (294 MPa).