{"title":"确定偏心和楔形机构对防盗装置部件的风荷载最大计算总值","authors":"S. M. Selivonchik, N. L. Nesterenko","doi":"10.21122/2227-1031-2024-23-1-33-45","DOIUrl":null,"url":null,"abstract":"To carry out a power calculation of the anti-driveaway device (from now on referred to as – AD) of lifting cranes operating in the open air, it is necessary to know the maximum calculated value of the wind force on the elements of the AD rails connected by side bars. The various types of anti-theft crane devices recommended for use have a number of disadvantages, which have been written about in previous papers. Anti-theft crane devices are also known, in which the stop of lifting cranes on the rail track is carried out by a locking eccentric interacting with the surface of the rail head. The reliabi-lity of such devices is insufficient, since due to the constant force of the spring, the adhesion force of the eccentric to the rail does not depend on the changing wind force. To carry out a power calculation of the anti-theft device for cranes operating in the open air, it is necessary to know the maximum calculated value of the wind force acting on its elements that hold the cranes on the rails when the cranes are inoperative. When a crane moves along rails under the influence of wind force Pw, the eccentric, turning, transmits the pressure force from the rail to the double-arm lever connecting the eccentric mechanism to the wedge mechanism. The eccentric mechanism is essentially a drive for the vertical movement of the wedge, as a result of which the pincer clamp closes on the rail head and the crane stops. Thus, the energy developed by the crane, driven by the force Pw, is used to stop it. For this purpose, the paper deals with the issues of determining the maximum design values of the wind force acting on the total lateral surfaces of various types of cranes under different climatic, aerodynamic, probabilistic and other wind loads. A methodology is given for determining the maximum calculated total values of wind loads on the elements of the developed anti-theft device for lifting cranes moving along crane rail tracks. The calculated total lateral areas and wind loads on bridge support single- and double-girder cranes, gantry and tower cranes for various designs, spans, load capacities and other parameters have been determined. Based on the calculations performed, it is possible to create a model range of anti-theft devices for various designs of load-lifting cranes moving on crane rails under various operating conditions.","PeriodicalId":297325,"journal":{"name":"Science & Technique","volume":"50 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of Maximum Calculated Total Values of Wind Loads on the Elements of Anti-Theft Device from Eccentric and Wedge Mechanism\",\"authors\":\"S. M. Selivonchik, N. L. Nesterenko\",\"doi\":\"10.21122/2227-1031-2024-23-1-33-45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To carry out a power calculation of the anti-driveaway device (from now on referred to as – AD) of lifting cranes operating in the open air, it is necessary to know the maximum calculated value of the wind force on the elements of the AD rails connected by side bars. The various types of anti-theft crane devices recommended for use have a number of disadvantages, which have been written about in previous papers. Anti-theft crane devices are also known, in which the stop of lifting cranes on the rail track is carried out by a locking eccentric interacting with the surface of the rail head. The reliabi-lity of such devices is insufficient, since due to the constant force of the spring, the adhesion force of the eccentric to the rail does not depend on the changing wind force. To carry out a power calculation of the anti-theft device for cranes operating in the open air, it is necessary to know the maximum calculated value of the wind force acting on its elements that hold the cranes on the rails when the cranes are inoperative. When a crane moves along rails under the influence of wind force Pw, the eccentric, turning, transmits the pressure force from the rail to the double-arm lever connecting the eccentric mechanism to the wedge mechanism. The eccentric mechanism is essentially a drive for the vertical movement of the wedge, as a result of which the pincer clamp closes on the rail head and the crane stops. Thus, the energy developed by the crane, driven by the force Pw, is used to stop it. For this purpose, the paper deals with the issues of determining the maximum design values of the wind force acting on the total lateral surfaces of various types of cranes under different climatic, aerodynamic, probabilistic and other wind loads. A methodology is given for determining the maximum calculated total values of wind loads on the elements of the developed anti-theft device for lifting cranes moving along crane rail tracks. The calculated total lateral areas and wind loads on bridge support single- and double-girder cranes, gantry and tower cranes for various designs, spans, load capacities and other parameters have been determined. Based on the calculations performed, it is possible to create a model range of anti-theft devices for various designs of load-lifting cranes moving on crane rails under various operating conditions.\",\"PeriodicalId\":297325,\"journal\":{\"name\":\"Science & Technique\",\"volume\":\"50 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science & Technique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/2227-1031-2024-23-1-33-45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Technique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/2227-1031-2024-23-1-33-45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
要对露天运行的起重设备的防脱装置(以下简称 AD)进行功率计算,必须知道通过侧杆连接的 AD 导轨元件上风力的最大计算值。推荐使用的各种类型的起重机防盗装置都有一些缺点,这在以前的文章中已有介绍。防盗起重机装置也是已知的,在这种装置中,起重起重机在轨道上的停止是通过与轨头表面相互作用的锁定偏心实现的。这种装置的可靠性不足,因为由于弹簧的恒定力,偏心与轨道的附着力并不取决于风力的变化。要对露天运行的起重机防盗装置进行功率计算,就必须知道当起重机不工作时,作用在将起重机固定在轨道上的元件上的风力的最大计算值。当起重机在风力 Pw 的作用下沿轨道移动时,偏心转动,将轨道上的压力传递给连接偏心机构和楔块机构的双臂杠杆。偏心机构实质上是楔块垂直运动的驱动装置,楔块垂直运动的结果是夹钳夹紧轨头,起重机停止。因此,起重机在力 Pw 的驱动下产生的能量被用来使其停止。为此,本文讨论了在不同气候、空气动力、概率和其他风荷载条件下,确定作用在各类起重机总侧向表面上的风力最大设计值的问题。文中给出了一种方法,用于确定所开发的沿起重机轨道移动的起重防盗装置各部件上风荷载的最大计算总值。确定了各种设计、跨度、载荷能力和其他参数下桥支座单梁和双梁起重机、龙门起重机和塔式起重机的总横向面积和风载荷计算值。根据所进行的计算,可以为各种设计的在起重机轨道上移动的起重起重机在各种运行条件下创建一系列防盗装置模型。
Determination of Maximum Calculated Total Values of Wind Loads on the Elements of Anti-Theft Device from Eccentric and Wedge Mechanism
To carry out a power calculation of the anti-driveaway device (from now on referred to as – AD) of lifting cranes operating in the open air, it is necessary to know the maximum calculated value of the wind force on the elements of the AD rails connected by side bars. The various types of anti-theft crane devices recommended for use have a number of disadvantages, which have been written about in previous papers. Anti-theft crane devices are also known, in which the stop of lifting cranes on the rail track is carried out by a locking eccentric interacting with the surface of the rail head. The reliabi-lity of such devices is insufficient, since due to the constant force of the spring, the adhesion force of the eccentric to the rail does not depend on the changing wind force. To carry out a power calculation of the anti-theft device for cranes operating in the open air, it is necessary to know the maximum calculated value of the wind force acting on its elements that hold the cranes on the rails when the cranes are inoperative. When a crane moves along rails under the influence of wind force Pw, the eccentric, turning, transmits the pressure force from the rail to the double-arm lever connecting the eccentric mechanism to the wedge mechanism. The eccentric mechanism is essentially a drive for the vertical movement of the wedge, as a result of which the pincer clamp closes on the rail head and the crane stops. Thus, the energy developed by the crane, driven by the force Pw, is used to stop it. For this purpose, the paper deals with the issues of determining the maximum design values of the wind force acting on the total lateral surfaces of various types of cranes under different climatic, aerodynamic, probabilistic and other wind loads. A methodology is given for determining the maximum calculated total values of wind loads on the elements of the developed anti-theft device for lifting cranes moving along crane rail tracks. The calculated total lateral areas and wind loads on bridge support single- and double-girder cranes, gantry and tower cranes for various designs, spans, load capacities and other parameters have been determined. Based on the calculations performed, it is possible to create a model range of anti-theft devices for various designs of load-lifting cranes moving on crane rails under various operating conditions.