Pub Date : 2024-02-05DOI: 10.21122/2227-1031-2024-23-1-58-66
N. Strutsky, V. Romaniuk
In the long term, along with the growth of nuclear power and related changes in the fuel and energy balance of the country, natural gas will retain an important place in the national economy, including in the production of heat and electricity Accordingly, the importance of gas distribution networks, which directly supply fuel to the Republic's consumers, will remain for a long time. According with the Concept of the National Strategy for Sustainable Development of the Republic of Belarus for the period until 2035, the main task in the gas sector is to maintain production assets at a level ensuring safe energy supply. Practice shows that corrosion factor has the greatest potential to influence the technical condition of steel underground distribution gas pipelines. To compensate for corrosion processes, steel underground pipelines are equipped with special protective means, in particular, insulation coatings. One of the key operational characteristics of insulation is its integrity, which is controlled through periodic (comprehensive) instrumental technical inspection. Based on the inspection results, statistics of identified defects of protective coatings is formed. The work examines the issues of ensuring the reliability of operational data, and highlights the experience of implementing specialized software packages in gas supply organizations of the Beltopgaz State Production Association for recording and processing the results of instrument surveys of gas distribution pipelines. The issue of the influence of organizational and production aspect (features of technology, local practice of planning and performing specific types of work on technical operation) on the structure of operational data, which requires separate study and accounting for their further statistical processing and use, has been considered in the paper.
{"title":"Some Issues of Ensuring Completeness and Reliability of Operational Data Obtained in the Course of Instrument Inspection of Steel Underground Gas Pipelines","authors":"N. Strutsky, V. Romaniuk","doi":"10.21122/2227-1031-2024-23-1-58-66","DOIUrl":"https://doi.org/10.21122/2227-1031-2024-23-1-58-66","url":null,"abstract":"In the long term, along with the growth of nuclear power and related changes in the fuel and energy balance of the country, natural gas will retain an important place in the national economy, including in the production of heat and electricity Accordingly, the importance of gas distribution networks, which directly supply fuel to the Republic's consumers, will remain for a long time. According with the Concept of the National Strategy for Sustainable Development of the Republic of Belarus for the period until 2035, the main task in the gas sector is to maintain production assets at a level ensuring safe energy supply. Practice shows that corrosion factor has the greatest potential to influence the technical condition of steel underground distribution gas pipelines. To compensate for corrosion processes, steel underground pipelines are equipped with special protective means, in particular, insulation coatings. One of the key operational characteristics of insulation is its integrity, which is controlled through periodic (comprehensive) instrumental technical inspection. Based on the inspection results, statistics of identified defects of protective coatings is formed. The work examines the issues of ensuring the reliability of operational data, and highlights the experience of implementing specialized software packages in gas supply organizations of the Beltopgaz State Production Association for recording and processing the results of instrument surveys of gas distribution pipelines. The issue of the influence of organizational and production aspect (features of technology, local practice of planning and performing specific types of work on technical operation) on the structure of operational data, which requires separate study and accounting for their further statistical processing and use, has been considered in the paper.","PeriodicalId":297325,"journal":{"name":"Science & Technique","volume":"14 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139803400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.21122/2227-1031-2024-23-1-46-57
K. Povkolas
The paper provides a method for calculating additional settlements of slab foundations of existing buildings and structures from vibration-dynamic influences that arise during various construction works near them (driving piles, vibra- tory driving of sheet piling beams, soil compaction with heavy rammers and vibrating hammers), as well as from industrial equipment and transport. The technique includes the following main steps. Using the finite element method, or measured existing vibration fields, the distribution of the maximum accelerations of ground vibrations under the base of the foundation along the depth is determined and the zone in which they exceed the critical accelerations at which volumetric and shear deformations of the soil begin to appear is identified. The soil at the base of the foundation is divided into elementary layers with a thickness of no more than 1/4 of the width of the foundation. Further, according to the known vibration-compression depen-dencies (the dependence of the change in the porosity coefficient e of soil samples on the acceleration of their vibrations a), which are obtained in laboratory conditions, the settlements of each layer are determined, the summation of which gives the total value of the additional dynamic settlement Sд. If it, together with the static settlement Sст, exceeds the maximum normalized settlement values, it is proposed to use three methods to reduce or eliminate Sд – drilling injection strengthening of the zone of development of additional settlements, the use of a horizontal inertial plate or a vertical barrier made of easily compressible materials in the path of vibration propagation, the use of which reduces the intensity of vibration-dynamic impacts transmitted to the foundations under consideration.
本文提供了一种方法,用于计算现有建筑物和结构的楼板地基在其附近的各种建筑工程(打桩、振动打板桩梁、用重型夯实机和振动锤夯实土壤)以及工业设备和运输过程中产生的振动动力影响。该技术包括以下主要步骤。使用有限元方法或测量现有振动场,确定地基底部地面振动的最大加速度沿深度的分布,并确定其超过临界加速度的区域,在该区域土壤开始出现体积和剪切变形。地基底部的土壤被分成厚度不超过地基宽度 1/4 的基本层。此外,根据在实验室条件下获得的已知振动-压缩依赖性(土样孔隙度系数 e 的变化对其振动加速度 a 的依赖性),确定每层的沉降量,将其相加得出附加动态沉降 Sд 的总值。如果它与静态沉降 Sд一起超过了最大归一化沉降值,则建议使用三种方法来减少或消除 Sд--在额外沉降发展区进行钻孔注浆加固,在振动传播路径上使用水平惯性板或由易压缩材料制成的垂直屏障,使用这些方法可以减少传递到地基上的振动动力冲击强度。
{"title":"Methodology for Calculating Additional Dynamic Settlements of the Bases of Slab Foundations of Buildings and Structures from Vibrations Propagating in the Soil Environment","authors":"K. Povkolas","doi":"10.21122/2227-1031-2024-23-1-46-57","DOIUrl":"https://doi.org/10.21122/2227-1031-2024-23-1-46-57","url":null,"abstract":"The paper provides a method for calculating additional settlements of slab foundations of existing buildings and structures from vibration-dynamic influences that arise during various construction works near them (driving piles, vibra- tory driving of sheet piling beams, soil compaction with heavy rammers and vibrating hammers), as well as from industrial equipment and transport. The technique includes the following main steps. Using the finite element method, or measured existing vibration fields, the distribution of the maximum accelerations of ground vibrations under the base of the foundation along the depth is determined and the zone in which they exceed the critical accelerations at which volumetric and shear deformations of the soil begin to appear is identified. The soil at the base of the foundation is divided into elementary layers with a thickness of no more than 1/4 of the width of the foundation. Further, according to the known vibration-compression depen-dencies (the dependence of the change in the porosity coefficient e of soil samples on the acceleration of their vibrations a), which are obtained in laboratory conditions, the settlements of each layer are determined, the summation of which gives the total value of the additional dynamic settlement Sд. If it, together with the static settlement Sст, exceeds the maximum normalized settlement values, it is proposed to use three methods to reduce or eliminate Sд – drilling injection strengthening of the zone of development of additional settlements, the use of a horizontal inertial plate or a vertical barrier made of easily compressible materials in the path of vibration propagation, the use of which reduces the intensity of vibration-dynamic impacts transmitted to the foundations under consideration.","PeriodicalId":297325,"journal":{"name":"Science & Technique","volume":"15 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139803532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.21122/2227-1031-2024-23-1-80-86
Z. T. Gaibnazarova, B. T. Solieva, N. A. Iminova
There is a class of complex systems characterized by dynamism, multi-link structural elements, multi-stage, multi-linked chain of processes. Moreover, each of these processes occurs under conditions of stochastic and non-stochastic uncertainty in the initial information, internal and external environment, which predetermine the uncertainty of the nature of the development of the situation. Decision-making problems in such systems are divided into two types: 1) decision-making problems under risk conditions, when uncertainty conditions are only probabilistic, stochastic in nature; 2) decision-making problems under conditions of uncertainty, when the accompanying conditions are of a non-stochastic nature, and also when the necessary reliable statistical data is unknown. In tasks of the second type, risks are manifested to a greater extent than in the first. At the same time, risk should be considered – as an object, event, phenomenon – as a formal mathematical category in accordance with its following information interpretation: risk is information uncertainty, fuzziness of the “object – subject – environment” system and its individual elements. The measure of this uncertainty determines the measure of danger, possible damage, loss from the implementation of some decision or event. The existence of risk is associated with the inability to predict the future with 100 % accuracy. Based on this, the main property of risk should be singled out: risk occurs only in relation to the future and is inextricably linked with forecasting, and therefore with decision-making in general (the word “risk” literally means “making a decision”, the result of which is unknown). Following the above, it is also worth noting that the categories “risk” and “uncertainty” are closely related and are often used as synonyms. In conditions when the initial factors are given in the form of fuzzy characteristics, other approaches based on the intelligent technologies of Soft Computing are widely used for forecasting. When evaluating alternative decision-making options for risk assessment under uncertainty, the problem of developing fuzzy models based on fuzzy inference rules arises. But there is no universal method for constructing fuzzy evaluation models. The advantage of fuzzy logic lies in the possibility of using expert knowledge about a given object in the form of if “inputs”, then “outputs”. In the paper a bankruptcy risk model is developed in poorly formalized processes for the purpose of forecasting.
{"title":"Forecasting the Risk of Bankruptcy in Poorly Formalized Processes","authors":"Z. T. Gaibnazarova, B. T. Solieva, N. A. Iminova","doi":"10.21122/2227-1031-2024-23-1-80-86","DOIUrl":"https://doi.org/10.21122/2227-1031-2024-23-1-80-86","url":null,"abstract":"There is a class of complex systems characterized by dynamism, multi-link structural elements, multi-stage, multi-linked chain of processes. Moreover, each of these processes occurs under conditions of stochastic and non-stochastic uncertainty in the initial information, internal and external environment, which predetermine the uncertainty of the nature of the development of the situation. Decision-making problems in such systems are divided into two types: 1) decision-making problems under risk conditions, when uncertainty conditions are only probabilistic, stochastic in nature; 2) decision-making problems under conditions of uncertainty, when the accompanying conditions are of a non-stochastic nature, and also when the necessary reliable statistical data is unknown. In tasks of the second type, risks are manifested to a greater extent than in the first. At the same time, risk should be considered – as an object, event, phenomenon – as a formal mathematical category in accordance with its following information interpretation: risk is information uncertainty, fuzziness of the “object – subject – environment” system and its individual elements. The measure of this uncertainty determines the measure of danger, possible damage, loss from the implementation of some decision or event. The existence of risk is associated with the inability to predict the future with 100 % accuracy. Based on this, the main property of risk should be singled out: risk occurs only in relation to the future and is inextricably linked with forecasting, and therefore with decision-making in general (the word “risk” literally means “making a decision”, the result of which is unknown). Following the above, it is also worth noting that the categories “risk” and “uncertainty” are closely related and are often used as synonyms. In conditions when the initial factors are given in the form of fuzzy characteristics, other approaches based on the intelligent technologies of Soft Computing are widely used for forecasting. When evaluating alternative decision-making options for risk assessment under uncertainty, the problem of developing fuzzy models based on fuzzy inference rules arises. But there is no universal method for constructing fuzzy evaluation models. The advantage of fuzzy logic lies in the possibility of using expert knowledge about a given object in the form of if “inputs”, then “outputs”. In the paper a bankruptcy risk model is developed in poorly formalized processes for the purpose of forecasting.","PeriodicalId":297325,"journal":{"name":"Science & Technique","volume":"18 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139805454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.21122/2227-1031-2024-23-1-33-45
S. M. Selivonchik, N. L. Nesterenko
To carry out a power calculation of the anti-driveaway device (from now on referred to as – AD) of lifting cranes operating in the open air, it is necessary to know the maximum calculated value of the wind force on the elements of the AD rails connected by side bars. The various types of anti-theft crane devices recommended for use have a number of disadvantages, which have been written about in previous papers. Anti-theft crane devices are also known, in which the stop of lifting cranes on the rail track is carried out by a locking eccentric interacting with the surface of the rail head. The reliabi-lity of such devices is insufficient, since due to the constant force of the spring, the adhesion force of the eccentric to the rail does not depend on the changing wind force. To carry out a power calculation of the anti-theft device for cranes operating in the open air, it is necessary to know the maximum calculated value of the wind force acting on its elements that hold the cranes on the rails when the cranes are inoperative. When a crane moves along rails under the influence of wind force Pw, the eccentric, turning, transmits the pressure force from the rail to the double-arm lever connecting the eccentric mechanism to the wedge mechanism. The eccentric mechanism is essentially a drive for the vertical movement of the wedge, as a result of which the pincer clamp closes on the rail head and the crane stops. Thus, the energy developed by the crane, driven by the force Pw, is used to stop it. For this purpose, the paper deals with the issues of determining the maximum design values of the wind force acting on the total lateral surfaces of various types of cranes under different climatic, aerodynamic, probabilistic and other wind loads. A methodology is given for determining the maximum calculated total values of wind loads on the elements of the developed anti-theft device for lifting cranes moving along crane rail tracks. The calculated total lateral areas and wind loads on bridge support single- and double-girder cranes, gantry and tower cranes for various designs, spans, load capacities and other parameters have been determined. Based on the calculations performed, it is possible to create a model range of anti-theft devices for various designs of load-lifting cranes moving on crane rails under various operating conditions.
要对露天运行的起重设备的防脱装置(以下简称 AD)进行功率计算,必须知道通过侧杆连接的 AD 导轨元件上风力的最大计算值。推荐使用的各种类型的起重机防盗装置都有一些缺点,这在以前的文章中已有介绍。防盗起重机装置也是已知的,在这种装置中,起重起重机在轨道上的停止是通过与轨头表面相互作用的锁定偏心实现的。这种装置的可靠性不足,因为由于弹簧的恒定力,偏心与轨道的附着力并不取决于风力的变化。要对露天运行的起重机防盗装置进行功率计算,就必须知道当起重机不工作时,作用在将起重机固定在轨道上的元件上的风力的最大计算值。当起重机在风力 Pw 的作用下沿轨道移动时,偏心转动,将轨道上的压力传递给连接偏心机构和楔块机构的双臂杠杆。偏心机构实质上是楔块垂直运动的驱动装置,楔块垂直运动的结果是夹钳夹紧轨头,起重机停止。因此,起重机在力 Pw 的驱动下产生的能量被用来使其停止。为此,本文讨论了在不同气候、空气动力、概率和其他风荷载条件下,确定作用在各类起重机总侧向表面上的风力最大设计值的问题。文中给出了一种方法,用于确定所开发的沿起重机轨道移动的起重防盗装置各部件上风荷载的最大计算总值。确定了各种设计、跨度、载荷能力和其他参数下桥支座单梁和双梁起重机、龙门起重机和塔式起重机的总横向面积和风载荷计算值。根据所进行的计算,可以为各种设计的在起重机轨道上移动的起重起重机在各种运行条件下创建一系列防盗装置模型。
{"title":"Determination of Maximum Calculated Total Values of Wind Loads on the Elements of Anti-Theft Device from Eccentric and Wedge Mechanism","authors":"S. M. Selivonchik, N. L. Nesterenko","doi":"10.21122/2227-1031-2024-23-1-33-45","DOIUrl":"https://doi.org/10.21122/2227-1031-2024-23-1-33-45","url":null,"abstract":"To carry out a power calculation of the anti-driveaway device (from now on referred to as – AD) of lifting cranes operating in the open air, it is necessary to know the maximum calculated value of the wind force on the elements of the AD rails connected by side bars. The various types of anti-theft crane devices recommended for use have a number of disadvantages, which have been written about in previous papers. Anti-theft crane devices are also known, in which the stop of lifting cranes on the rail track is carried out by a locking eccentric interacting with the surface of the rail head. The reliabi-lity of such devices is insufficient, since due to the constant force of the spring, the adhesion force of the eccentric to the rail does not depend on the changing wind force. To carry out a power calculation of the anti-theft device for cranes operating in the open air, it is necessary to know the maximum calculated value of the wind force acting on its elements that hold the cranes on the rails when the cranes are inoperative. When a crane moves along rails under the influence of wind force Pw, the eccentric, turning, transmits the pressure force from the rail to the double-arm lever connecting the eccentric mechanism to the wedge mechanism. The eccentric mechanism is essentially a drive for the vertical movement of the wedge, as a result of which the pincer clamp closes on the rail head and the crane stops. Thus, the energy developed by the crane, driven by the force Pw, is used to stop it. For this purpose, the paper deals with the issues of determining the maximum design values of the wind force acting on the total lateral surfaces of various types of cranes under different climatic, aerodynamic, probabilistic and other wind loads. A methodology is given for determining the maximum calculated total values of wind loads on the elements of the developed anti-theft device for lifting cranes moving along crane rail tracks. The calculated total lateral areas and wind loads on bridge support single- and double-girder cranes, gantry and tower cranes for various designs, spans, load capacities and other parameters have been determined. Based on the calculations performed, it is possible to create a model range of anti-theft devices for various designs of load-lifting cranes moving on crane rails under various operating conditions.","PeriodicalId":297325,"journal":{"name":"Science & Technique","volume":"50 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139805780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.21122/2227-1031-2024-23-1-33-45
S. M. Selivonchik, N. L. Nesterenko
To carry out a power calculation of the anti-driveaway device (from now on referred to as – AD) of lifting cranes operating in the open air, it is necessary to know the maximum calculated value of the wind force on the elements of the AD rails connected by side bars. The various types of anti-theft crane devices recommended for use have a number of disadvantages, which have been written about in previous papers. Anti-theft crane devices are also known, in which the stop of lifting cranes on the rail track is carried out by a locking eccentric interacting with the surface of the rail head. The reliabi-lity of such devices is insufficient, since due to the constant force of the spring, the adhesion force of the eccentric to the rail does not depend on the changing wind force. To carry out a power calculation of the anti-theft device for cranes operating in the open air, it is necessary to know the maximum calculated value of the wind force acting on its elements that hold the cranes on the rails when the cranes are inoperative. When a crane moves along rails under the influence of wind force Pw, the eccentric, turning, transmits the pressure force from the rail to the double-arm lever connecting the eccentric mechanism to the wedge mechanism. The eccentric mechanism is essentially a drive for the vertical movement of the wedge, as a result of which the pincer clamp closes on the rail head and the crane stops. Thus, the energy developed by the crane, driven by the force Pw, is used to stop it. For this purpose, the paper deals with the issues of determining the maximum design values of the wind force acting on the total lateral surfaces of various types of cranes under different climatic, aerodynamic, probabilistic and other wind loads. A methodology is given for determining the maximum calculated total values of wind loads on the elements of the developed anti-theft device for lifting cranes moving along crane rail tracks. The calculated total lateral areas and wind loads on bridge support single- and double-girder cranes, gantry and tower cranes for various designs, spans, load capacities and other parameters have been determined. Based on the calculations performed, it is possible to create a model range of anti-theft devices for various designs of load-lifting cranes moving on crane rails under various operating conditions.
要对露天运行的起重设备的防脱装置(以下简称 AD)进行功率计算,必须知道通过侧杆连接的 AD 导轨元件上风力的最大计算值。推荐使用的各种类型的起重机防盗装置都有一些缺点,这在以前的文章中已有介绍。防盗起重机装置也是已知的,在这种装置中,起重起重机在轨道上的停止是通过与轨头表面相互作用的锁定偏心实现的。这种装置的可靠性不足,因为由于弹簧的恒定力,偏心与轨道的附着力并不取决于风力的变化。要对露天运行的起重机防盗装置进行功率计算,就必须知道当起重机不工作时,作用在将起重机固定在轨道上的元件上的风力的最大计算值。当起重机在风力 Pw 的作用下沿轨道移动时,偏心转动,将轨道上的压力传递给连接偏心机构和楔块机构的双臂杠杆。偏心机构实质上是楔块垂直运动的驱动装置,楔块垂直运动的结果是夹钳夹紧轨头,起重机停止。因此,起重机在力 Pw 的驱动下产生的能量被用来使其停止。为此,本文讨论了在不同气候、空气动力、概率和其他风荷载条件下,确定作用在各类起重机总侧向表面上的风力最大设计值的问题。文中给出了一种方法,用于确定所开发的沿起重机轨道移动的起重防盗装置各部件上风荷载的最大计算总值。确定了各种设计、跨度、载荷能力和其他参数下桥支座单梁和双梁起重机、龙门起重机和塔式起重机的总横向面积和风载荷计算值。根据所进行的计算,可以为各种设计的在起重机轨道上移动的起重起重机在各种运行条件下创建一系列防盗装置模型。
{"title":"Determination of Maximum Calculated Total Values of Wind Loads on the Elements of Anti-Theft Device from Eccentric and Wedge Mechanism","authors":"S. M. Selivonchik, N. L. Nesterenko","doi":"10.21122/2227-1031-2024-23-1-33-45","DOIUrl":"https://doi.org/10.21122/2227-1031-2024-23-1-33-45","url":null,"abstract":"To carry out a power calculation of the anti-driveaway device (from now on referred to as – AD) of lifting cranes operating in the open air, it is necessary to know the maximum calculated value of the wind force on the elements of the AD rails connected by side bars. The various types of anti-theft crane devices recommended for use have a number of disadvantages, which have been written about in previous papers. Anti-theft crane devices are also known, in which the stop of lifting cranes on the rail track is carried out by a locking eccentric interacting with the surface of the rail head. The reliabi-lity of such devices is insufficient, since due to the constant force of the spring, the adhesion force of the eccentric to the rail does not depend on the changing wind force. To carry out a power calculation of the anti-theft device for cranes operating in the open air, it is necessary to know the maximum calculated value of the wind force acting on its elements that hold the cranes on the rails when the cranes are inoperative. When a crane moves along rails under the influence of wind force Pw, the eccentric, turning, transmits the pressure force from the rail to the double-arm lever connecting the eccentric mechanism to the wedge mechanism. The eccentric mechanism is essentially a drive for the vertical movement of the wedge, as a result of which the pincer clamp closes on the rail head and the crane stops. Thus, the energy developed by the crane, driven by the force Pw, is used to stop it. For this purpose, the paper deals with the issues of determining the maximum design values of the wind force acting on the total lateral surfaces of various types of cranes under different climatic, aerodynamic, probabilistic and other wind loads. A methodology is given for determining the maximum calculated total values of wind loads on the elements of the developed anti-theft device for lifting cranes moving along crane rail tracks. The calculated total lateral areas and wind loads on bridge support single- and double-girder cranes, gantry and tower cranes for various designs, spans, load capacities and other parameters have been determined. Based on the calculations performed, it is possible to create a model range of anti-theft devices for various designs of load-lifting cranes moving on crane rails under various operating conditions.","PeriodicalId":297325,"journal":{"name":"Science & Technique","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139865412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.21122/2227-1031-2024-23-1-58-66
N. Strutsky, V. Romaniuk
In the long term, along with the growth of nuclear power and related changes in the fuel and energy balance of the country, natural gas will retain an important place in the national economy, including in the production of heat and electricity Accordingly, the importance of gas distribution networks, which directly supply fuel to the Republic's consumers, will remain for a long time. According with the Concept of the National Strategy for Sustainable Development of the Republic of Belarus for the period until 2035, the main task in the gas sector is to maintain production assets at a level ensuring safe energy supply. Practice shows that corrosion factor has the greatest potential to influence the technical condition of steel underground distribution gas pipelines. To compensate for corrosion processes, steel underground pipelines are equipped with special protective means, in particular, insulation coatings. One of the key operational characteristics of insulation is its integrity, which is controlled through periodic (comprehensive) instrumental technical inspection. Based on the inspection results, statistics of identified defects of protective coatings is formed. The work examines the issues of ensuring the reliability of operational data, and highlights the experience of implementing specialized software packages in gas supply organizations of the Beltopgaz State Production Association for recording and processing the results of instrument surveys of gas distribution pipelines. The issue of the influence of organizational and production aspect (features of technology, local practice of planning and performing specific types of work on technical operation) on the structure of operational data, which requires separate study and accounting for their further statistical processing and use, has been considered in the paper.
{"title":"Some Issues of Ensuring Completeness and Reliability of Operational Data Obtained in the Course of Instrument Inspection of Steel Underground Gas Pipelines","authors":"N. Strutsky, V. Romaniuk","doi":"10.21122/2227-1031-2024-23-1-58-66","DOIUrl":"https://doi.org/10.21122/2227-1031-2024-23-1-58-66","url":null,"abstract":"In the long term, along with the growth of nuclear power and related changes in the fuel and energy balance of the country, natural gas will retain an important place in the national economy, including in the production of heat and electricity Accordingly, the importance of gas distribution networks, which directly supply fuel to the Republic's consumers, will remain for a long time. According with the Concept of the National Strategy for Sustainable Development of the Republic of Belarus for the period until 2035, the main task in the gas sector is to maintain production assets at a level ensuring safe energy supply. Practice shows that corrosion factor has the greatest potential to influence the technical condition of steel underground distribution gas pipelines. To compensate for corrosion processes, steel underground pipelines are equipped with special protective means, in particular, insulation coatings. One of the key operational characteristics of insulation is its integrity, which is controlled through periodic (comprehensive) instrumental technical inspection. Based on the inspection results, statistics of identified defects of protective coatings is formed. The work examines the issues of ensuring the reliability of operational data, and highlights the experience of implementing specialized software packages in gas supply organizations of the Beltopgaz State Production Association for recording and processing the results of instrument surveys of gas distribution pipelines. The issue of the influence of organizational and production aspect (features of technology, local practice of planning and performing specific types of work on technical operation) on the structure of operational data, which requires separate study and accounting for their further statistical processing and use, has been considered in the paper.","PeriodicalId":297325,"journal":{"name":"Science & Technique","volume":"78 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139863033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.21122/2227-1031-2024-23-1-46-57
K. Povkolas
The paper provides a method for calculating additional settlements of slab foundations of existing buildings and structures from vibration-dynamic influences that arise during various construction works near them (driving piles, vibra- tory driving of sheet piling beams, soil compaction with heavy rammers and vibrating hammers), as well as from industrial equipment and transport. The technique includes the following main steps. Using the finite element method, or measured existing vibration fields, the distribution of the maximum accelerations of ground vibrations under the base of the foundation along the depth is determined and the zone in which they exceed the critical accelerations at which volumetric and shear deformations of the soil begin to appear is identified. The soil at the base of the foundation is divided into elementary layers with a thickness of no more than 1/4 of the width of the foundation. Further, according to the known vibration-compression depen-dencies (the dependence of the change in the porosity coefficient e of soil samples on the acceleration of their vibrations a), which are obtained in laboratory conditions, the settlements of each layer are determined, the summation of which gives the total value of the additional dynamic settlement Sд. If it, together with the static settlement Sст, exceeds the maximum normalized settlement values, it is proposed to use three methods to reduce or eliminate Sд – drilling injection strengthening of the zone of development of additional settlements, the use of a horizontal inertial plate or a vertical barrier made of easily compressible materials in the path of vibration propagation, the use of which reduces the intensity of vibration-dynamic impacts transmitted to the foundations under consideration.
本文提供了一种方法,用于计算现有建筑物和结构的楼板地基在其附近的各种建筑工程(打桩、振动打板桩梁、用重型夯实机和振动锤夯实土壤)以及工业设备和运输过程中产生的振动动力影响。该技术包括以下主要步骤。使用有限元方法或测量现有振动场,确定地基底部地面振动的最大加速度沿深度的分布,并确定其超过临界加速度的区域,在该区域土壤开始出现体积和剪切变形。地基底部的土壤被分成厚度不超过地基宽度 1/4 的基本层。此外,根据在实验室条件下获得的已知振动-压缩依赖性(土样孔隙度系数 e 的变化对其振动加速度 a 的依赖性),确定每层的沉降量,将其相加得出附加动态沉降 Sд 的总值。如果它与静态沉降 Sд一起超过了最大归一化沉降值,则建议使用三种方法来减少或消除 Sд--在额外沉降发展区进行钻孔注浆加固,在振动传播路径上使用水平惯性板或由易压缩材料制成的垂直屏障,使用这些方法可以减少传递到地基上的振动动力冲击强度。
{"title":"Methodology for Calculating Additional Dynamic Settlements of the Bases of Slab Foundations of Buildings and Structures from Vibrations Propagating in the Soil Environment","authors":"K. Povkolas","doi":"10.21122/2227-1031-2024-23-1-46-57","DOIUrl":"https://doi.org/10.21122/2227-1031-2024-23-1-46-57","url":null,"abstract":"The paper provides a method for calculating additional settlements of slab foundations of existing buildings and structures from vibration-dynamic influences that arise during various construction works near them (driving piles, vibra- tory driving of sheet piling beams, soil compaction with heavy rammers and vibrating hammers), as well as from industrial equipment and transport. The technique includes the following main steps. Using the finite element method, or measured existing vibration fields, the distribution of the maximum accelerations of ground vibrations under the base of the foundation along the depth is determined and the zone in which they exceed the critical accelerations at which volumetric and shear deformations of the soil begin to appear is identified. The soil at the base of the foundation is divided into elementary layers with a thickness of no more than 1/4 of the width of the foundation. Further, according to the known vibration-compression depen-dencies (the dependence of the change in the porosity coefficient e of soil samples on the acceleration of their vibrations a), which are obtained in laboratory conditions, the settlements of each layer are determined, the summation of which gives the total value of the additional dynamic settlement Sд. If it, together with the static settlement Sст, exceeds the maximum normalized settlement values, it is proposed to use three methods to reduce or eliminate Sд – drilling injection strengthening of the zone of development of additional settlements, the use of a horizontal inertial plate or a vertical barrier made of easily compressible materials in the path of vibration propagation, the use of which reduces the intensity of vibration-dynamic impacts transmitted to the foundations under consideration.","PeriodicalId":297325,"journal":{"name":"Science & Technique","volume":"16 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139863516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.21122/2227-1031-2024-23-1-80-86
Z. T. Gaibnazarova, B. T. Solieva, N. A. Iminova
There is a class of complex systems characterized by dynamism, multi-link structural elements, multi-stage, multi-linked chain of processes. Moreover, each of these processes occurs under conditions of stochastic and non-stochastic uncertainty in the initial information, internal and external environment, which predetermine the uncertainty of the nature of the development of the situation. Decision-making problems in such systems are divided into two types: 1) decision-making problems under risk conditions, when uncertainty conditions are only probabilistic, stochastic in nature; 2) decision-making problems under conditions of uncertainty, when the accompanying conditions are of a non-stochastic nature, and also when the necessary reliable statistical data is unknown. In tasks of the second type, risks are manifested to a greater extent than in the first. At the same time, risk should be considered – as an object, event, phenomenon – as a formal mathematical category in accordance with its following information interpretation: risk is information uncertainty, fuzziness of the “object – subject – environment” system and its individual elements. The measure of this uncertainty determines the measure of danger, possible damage, loss from the implementation of some decision or event. The existence of risk is associated with the inability to predict the future with 100 % accuracy. Based on this, the main property of risk should be singled out: risk occurs only in relation to the future and is inextricably linked with forecasting, and therefore with decision-making in general (the word “risk” literally means “making a decision”, the result of which is unknown). Following the above, it is also worth noting that the categories “risk” and “uncertainty” are closely related and are often used as synonyms. In conditions when the initial factors are given in the form of fuzzy characteristics, other approaches based on the intelligent technologies of Soft Computing are widely used for forecasting. When evaluating alternative decision-making options for risk assessment under uncertainty, the problem of developing fuzzy models based on fuzzy inference rules arises. But there is no universal method for constructing fuzzy evaluation models. The advantage of fuzzy logic lies in the possibility of using expert knowledge about a given object in the form of if “inputs”, then “outputs”. In the paper a bankruptcy risk model is developed in poorly formalized processes for the purpose of forecasting.
{"title":"Forecasting the Risk of Bankruptcy in Poorly Formalized Processes","authors":"Z. T. Gaibnazarova, B. T. Solieva, N. A. Iminova","doi":"10.21122/2227-1031-2024-23-1-80-86","DOIUrl":"https://doi.org/10.21122/2227-1031-2024-23-1-80-86","url":null,"abstract":"There is a class of complex systems characterized by dynamism, multi-link structural elements, multi-stage, multi-linked chain of processes. Moreover, each of these processes occurs under conditions of stochastic and non-stochastic uncertainty in the initial information, internal and external environment, which predetermine the uncertainty of the nature of the development of the situation. Decision-making problems in such systems are divided into two types: 1) decision-making problems under risk conditions, when uncertainty conditions are only probabilistic, stochastic in nature; 2) decision-making problems under conditions of uncertainty, when the accompanying conditions are of a non-stochastic nature, and also when the necessary reliable statistical data is unknown. In tasks of the second type, risks are manifested to a greater extent than in the first. At the same time, risk should be considered – as an object, event, phenomenon – as a formal mathematical category in accordance with its following information interpretation: risk is information uncertainty, fuzziness of the “object – subject – environment” system and its individual elements. The measure of this uncertainty determines the measure of danger, possible damage, loss from the implementation of some decision or event. The existence of risk is associated with the inability to predict the future with 100 % accuracy. Based on this, the main property of risk should be singled out: risk occurs only in relation to the future and is inextricably linked with forecasting, and therefore with decision-making in general (the word “risk” literally means “making a decision”, the result of which is unknown). Following the above, it is also worth noting that the categories “risk” and “uncertainty” are closely related and are often used as synonyms. In conditions when the initial factors are given in the form of fuzzy characteristics, other approaches based on the intelligent technologies of Soft Computing are widely used for forecasting. When evaluating alternative decision-making options for risk assessment under uncertainty, the problem of developing fuzzy models based on fuzzy inference rules arises. But there is no universal method for constructing fuzzy evaluation models. The advantage of fuzzy logic lies in the possibility of using expert knowledge about a given object in the form of if “inputs”, then “outputs”. In the paper a bankruptcy risk model is developed in poorly formalized processes for the purpose of forecasting.","PeriodicalId":297325,"journal":{"name":"Science & Technique","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139865344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.21122/2227-1031-2024-23-1-67-79
M. V. Dobrynina, T. V. Rastimeshina
Development of higher education institutions within the framework of the “University 3.0” paradigm is actively analyzed in the research community of Russia, Belarus and Euroasian Economic Community countries. However, a small number of scientists are trying to give a comprehensive assessment of the role of Russian universities in achieving the goals of new industrial policy. The paper presents the results of a study aimed at filling this gap. The purpose of the study was to evaluate the efficiency of higher education institutions in the context of their contribution to achieving the goals of the new industrial policy (using the example of key development indicators of the National Research University of Electronic Technology (MIET). During the study, the following tasks have been solved: a brief overview of the main scientific publications covering the research issue was completed; the content and main directions of the new industrial policy were analyzed; the role of universities as key elements of the institutional mechanism of the new industrial policy has been revealed, through the implementation of which universities carry out it. A hypothesis has been put forward about imbalance of two key areas of development of leading Russian research universities in terms of their participation in increasing the economic power of Russia. Based on the analysis of the main indicators of the development of the National Research University of Electronic Technology (MIET) it has been demonstrated that significantly more time and resources is devoted to expanding the pre-sence of this university in national science and industry than to improving the quality of educational programs and introducing the results of innovative activity into work with students and graduate students. Conclusions have been made that theoretical model and practical ways and means for transporting resources, innovative solutions and innovation energy in the educational space are not sufficiently explored. Practical recommendations for educational institutions are formulated: it is proposed to involve industrial enterprises more widely not only in accreditation, but also in the implementation of educational programs (including such elements as internships and internships at industrial enterprises). This approach will help to strengthen the effects of the triple spiral of innovation in the training of engineering personnel for the real sector of the economy
{"title":"University as a Driver of New Industrial Policy of Russia: Efficiency Evaluation (Using the Case of National Research University of Electronic Technology)","authors":"M. V. Dobrynina, T. V. Rastimeshina","doi":"10.21122/2227-1031-2024-23-1-67-79","DOIUrl":"https://doi.org/10.21122/2227-1031-2024-23-1-67-79","url":null,"abstract":"Development of higher education institutions within the framework of the “University 3.0” paradigm is actively analyzed in the research community of Russia, Belarus and Euroasian Economic Community countries. However, a small number of scientists are trying to give a comprehensive assessment of the role of Russian universities in achieving the goals of new industrial policy. The paper presents the results of a study aimed at filling this gap. The purpose of the study was to evaluate the efficiency of higher education institutions in the context of their contribution to achieving the goals of the new industrial policy (using the example of key development indicators of the National Research University of Electronic Technology (MIET). During the study, the following tasks have been solved: a brief overview of the main scientific publications covering the research issue was completed; the content and main directions of the new industrial policy were analyzed; the role of universities as key elements of the institutional mechanism of the new industrial policy has been revealed, through the implementation of which universities carry out it. A hypothesis has been put forward about imbalance of two key areas of development of leading Russian research universities in terms of their participation in increasing the economic power of Russia. Based on the analysis of the main indicators of the development of the National Research University of Electronic Technology (MIET) it has been demonstrated that significantly more time and resources is devoted to expanding the pre-sence of this university in national science and industry than to improving the quality of educational programs and introducing the results of innovative activity into work with students and graduate students. Conclusions have been made that theoretical model and practical ways and means for transporting resources, innovative solutions and innovation energy in the educational space are not sufficiently explored. Practical recommendations for educational institutions are formulated: it is proposed to involve industrial enterprises more widely not only in accreditation, but also in the implementation of educational programs (including such elements as internships and internships at industrial enterprises). This approach will help to strengthen the effects of the triple spiral of innovation in the training of engineering personnel for the real sector of the economy","PeriodicalId":297325,"journal":{"name":"Science & Technique","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139864191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.21122/2227-1031-2024-23-1-67-79
M. V. Dobrynina, T. V. Rastimeshina
Development of higher education institutions within the framework of the “University 3.0” paradigm is actively analyzed in the research community of Russia, Belarus and Euroasian Economic Community countries. However, a small number of scientists are trying to give a comprehensive assessment of the role of Russian universities in achieving the goals of new industrial policy. The paper presents the results of a study aimed at filling this gap. The purpose of the study was to evaluate the efficiency of higher education institutions in the context of their contribution to achieving the goals of the new industrial policy (using the example of key development indicators of the National Research University of Electronic Technology (MIET). During the study, the following tasks have been solved: a brief overview of the main scientific publications covering the research issue was completed; the content and main directions of the new industrial policy were analyzed; the role of universities as key elements of the institutional mechanism of the new industrial policy has been revealed, through the implementation of which universities carry out it. A hypothesis has been put forward about imbalance of two key areas of development of leading Russian research universities in terms of their participation in increasing the economic power of Russia. Based on the analysis of the main indicators of the development of the National Research University of Electronic Technology (MIET) it has been demonstrated that significantly more time and resources is devoted to expanding the pre-sence of this university in national science and industry than to improving the quality of educational programs and introducing the results of innovative activity into work with students and graduate students. Conclusions have been made that theoretical model and practical ways and means for transporting resources, innovative solutions and innovation energy in the educational space are not sufficiently explored. Practical recommendations for educational institutions are formulated: it is proposed to involve industrial enterprises more widely not only in accreditation, but also in the implementation of educational programs (including such elements as internships and internships at industrial enterprises). This approach will help to strengthen the effects of the triple spiral of innovation in the training of engineering personnel for the real sector of the economy
{"title":"University as a Driver of New Industrial Policy of Russia: Efficiency Evaluation (Using the Case of National Research University of Electronic Technology)","authors":"M. V. Dobrynina, T. V. Rastimeshina","doi":"10.21122/2227-1031-2024-23-1-67-79","DOIUrl":"https://doi.org/10.21122/2227-1031-2024-23-1-67-79","url":null,"abstract":"Development of higher education institutions within the framework of the “University 3.0” paradigm is actively analyzed in the research community of Russia, Belarus and Euroasian Economic Community countries. However, a small number of scientists are trying to give a comprehensive assessment of the role of Russian universities in achieving the goals of new industrial policy. The paper presents the results of a study aimed at filling this gap. The purpose of the study was to evaluate the efficiency of higher education institutions in the context of their contribution to achieving the goals of the new industrial policy (using the example of key development indicators of the National Research University of Electronic Technology (MIET). During the study, the following tasks have been solved: a brief overview of the main scientific publications covering the research issue was completed; the content and main directions of the new industrial policy were analyzed; the role of universities as key elements of the institutional mechanism of the new industrial policy has been revealed, through the implementation of which universities carry out it. A hypothesis has been put forward about imbalance of two key areas of development of leading Russian research universities in terms of their participation in increasing the economic power of Russia. Based on the analysis of the main indicators of the development of the National Research University of Electronic Technology (MIET) it has been demonstrated that significantly more time and resources is devoted to expanding the pre-sence of this university in national science and industry than to improving the quality of educational programs and introducing the results of innovative activity into work with students and graduate students. Conclusions have been made that theoretical model and practical ways and means for transporting resources, innovative solutions and innovation energy in the educational space are not sufficiently explored. Practical recommendations for educational institutions are formulated: it is proposed to involve industrial enterprises more widely not only in accreditation, but also in the implementation of educational programs (including such elements as internships and internships at industrial enterprises). This approach will help to strengthen the effects of the triple spiral of innovation in the training of engineering personnel for the real sector of the economy","PeriodicalId":297325,"journal":{"name":"Science & Technique","volume":"14 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139804433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}