用于硅量子光子学的电信 C 波段 In(Ga)As 量子点的生长

Ponraj Vijayan, R. Joos, Marco Werner, Jakob Hirlinger-Alexander, Matthias Seibold, Sergej Vollmer, R. Sittig, S. Bauer, Fiona Braun, S. Portalupi, M. Jetter, P. Michler
{"title":"用于硅量子光子学的电信 C 波段 In(Ga)As 量子点的生长","authors":"Ponraj Vijayan, R. Joos, Marco Werner, Jakob Hirlinger-Alexander, Matthias Seibold, Sergej Vollmer, R. Sittig, S. Bauer, Fiona Braun, S. Portalupi, M. Jetter, P. Michler","doi":"10.1088/2633-4356/ad2522","DOIUrl":null,"url":null,"abstract":"\n Photonic integrated circuits based on the silicon-on-insulator platform currently allow high-density integration of optical and electro-optical components on the same chip. This high complexity is also transferred to quantum photonic integrated circuits, where non-linear processes are used for the generation of quantum light on the silicon chip. However, these intrinsically probabilistic light emission processes pose challenges to the ultimately achievable scalability. Here, an interesting solution would be employing on-demand sources of quantum light based on III-V platforms, which are nonetheless very complex to grow directly on silicon. In this paper, we show the integration of InAs quantum dots on silicon via the growth on a wafer bonded GaAs/Si template. To ensure emission in the telecom C-band (∼1550 nm), a metamorphic buffer layer approach is utilized. We show that the deposited single quantum dots show similar performance to their counterparts directly grown on the well-established GaAs platform. Our results demonstrate that on-demand telecom emitters can be directly and effectively integrated on silicon, without compromises on the performances of either the platforms","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"166 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth of telecom C-band In(Ga)As quantum dots for silicon quantum photonics\",\"authors\":\"Ponraj Vijayan, R. Joos, Marco Werner, Jakob Hirlinger-Alexander, Matthias Seibold, Sergej Vollmer, R. Sittig, S. Bauer, Fiona Braun, S. Portalupi, M. Jetter, P. Michler\",\"doi\":\"10.1088/2633-4356/ad2522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Photonic integrated circuits based on the silicon-on-insulator platform currently allow high-density integration of optical and electro-optical components on the same chip. This high complexity is also transferred to quantum photonic integrated circuits, where non-linear processes are used for the generation of quantum light on the silicon chip. However, these intrinsically probabilistic light emission processes pose challenges to the ultimately achievable scalability. Here, an interesting solution would be employing on-demand sources of quantum light based on III-V platforms, which are nonetheless very complex to grow directly on silicon. In this paper, we show the integration of InAs quantum dots on silicon via the growth on a wafer bonded GaAs/Si template. To ensure emission in the telecom C-band (∼1550 nm), a metamorphic buffer layer approach is utilized. We show that the deposited single quantum dots show similar performance to their counterparts directly grown on the well-established GaAs platform. Our results demonstrate that on-demand telecom emitters can be directly and effectively integrated on silicon, without compromises on the performances of either the platforms\",\"PeriodicalId\":345750,\"journal\":{\"name\":\"Materials for Quantum Technology\",\"volume\":\"166 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Quantum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2633-4356/ad2522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Quantum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-4356/ad2522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,基于硅绝缘体平台的光子集成电路可在同一芯片上实现光学和电子光学元件的高密度集成。量子光子集成电路也能实现这种高复杂性,在硅芯片上利用非线性过程产生量子光。然而,这些固有的概率光发射过程对最终实现可扩展性提出了挑战。在此,一种有趣的解决方案是采用基于 III-V 平台的按需量子光源,但直接在硅片上生长这种光源非常复杂。在本文中,我们展示了通过在晶圆键合砷化镓/硅模板上生长,在硅上集成砷化镓量子点的过程。为了确保在电信 C 波段(∼1550 nm)的发射,我们采用了变质缓冲层方法。我们的研究表明,沉积的单量子点与直接生长在成熟的砷化镓平台上的量子点性能相似。我们的研究结果表明,按需电信发射器可以直接有效地集成到硅上,而不会影响平台的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Growth of telecom C-band In(Ga)As quantum dots for silicon quantum photonics
Photonic integrated circuits based on the silicon-on-insulator platform currently allow high-density integration of optical and electro-optical components on the same chip. This high complexity is also transferred to quantum photonic integrated circuits, where non-linear processes are used for the generation of quantum light on the silicon chip. However, these intrinsically probabilistic light emission processes pose challenges to the ultimately achievable scalability. Here, an interesting solution would be employing on-demand sources of quantum light based on III-V platforms, which are nonetheless very complex to grow directly on silicon. In this paper, we show the integration of InAs quantum dots on silicon via the growth on a wafer bonded GaAs/Si template. To ensure emission in the telecom C-band (∼1550 nm), a metamorphic buffer layer approach is utilized. We show that the deposited single quantum dots show similar performance to their counterparts directly grown on the well-established GaAs platform. Our results demonstrate that on-demand telecom emitters can be directly and effectively integrated on silicon, without compromises on the performances of either the platforms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nitrogen-vacancy centers in diamond: discovery of additional electronic states Fabrication of tips for scanning probe magnetometry by diamond growth GaAs-on-insulator ridge waveguide nanobeam cavities with integrated InAs quantum dots Quantum materials engineering by structured cavity vacuum fluctuations Structural formation yield of GeV centers from implanted Ge in diamond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1