机器学习的进步:方法、应用和未来展望的全面探索

Bommireddy Srikanth Reddy
{"title":"机器学习的进步:方法、应用和未来展望的全面探索","authors":"Bommireddy Srikanth Reddy","doi":"10.59256/ijsreat.20240401001","DOIUrl":null,"url":null,"abstract":"Machine learning, a specialized subset of artificial intelligence, imparts the ability to machines to learn, while artificial intelligence (AI) encompasses the broader field dedicated to emulating human capabilities. Within AI, machine learning employs computational techniques to instruct computers on learning from their historical experiences. Unlike models based on predetermined equations, machine learning algorithms derive insights directly from data, progressively improving their performance as the volume of learning examples grows. This paper presents a comprehensive overview of the domain, exploring diverse machine learning methodologies such as supervised, unsupervised, and reinforcement learning, along with an examination of various programming languages employed in machine learning applications. Keywords: Machine learning, Artificial intelligence, Computational techniques, Historical experiences, Learning examples, Supervised learning, Unsupervised learning, Reinforcement learning, Programming languages, Machine learning applications","PeriodicalId":310227,"journal":{"name":"International Journal Of Scientific Research In Engineering & Technology","volume":"17 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in Machine Learning: A Comprehensive Exploration of Methods, Applications, and Future Perspectives\",\"authors\":\"Bommireddy Srikanth Reddy\",\"doi\":\"10.59256/ijsreat.20240401001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning, a specialized subset of artificial intelligence, imparts the ability to machines to learn, while artificial intelligence (AI) encompasses the broader field dedicated to emulating human capabilities. Within AI, machine learning employs computational techniques to instruct computers on learning from their historical experiences. Unlike models based on predetermined equations, machine learning algorithms derive insights directly from data, progressively improving their performance as the volume of learning examples grows. This paper presents a comprehensive overview of the domain, exploring diverse machine learning methodologies such as supervised, unsupervised, and reinforcement learning, along with an examination of various programming languages employed in machine learning applications. Keywords: Machine learning, Artificial intelligence, Computational techniques, Historical experiences, Learning examples, Supervised learning, Unsupervised learning, Reinforcement learning, Programming languages, Machine learning applications\",\"PeriodicalId\":310227,\"journal\":{\"name\":\"International Journal Of Scientific Research In Engineering & Technology\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal Of Scientific Research In Engineering & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59256/ijsreat.20240401001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal Of Scientific Research In Engineering & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59256/ijsreat.20240401001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习是人工智能的一个专门分支,它赋予机器学习的能力,而人工智能(AI)则包括致力于模拟人类能力的更广泛领域。在人工智能中,机器学习采用计算技术指导计算机从历史经验中学习。与基于预定方程的模型不同,机器学习算法直接从数据中获得洞察力,并随着学习实例数量的增加而逐步提高性能。本文全面概述了这一领域,探讨了各种机器学习方法,如监督学习、无监督学习和强化学习,同时还研究了机器学习应用中使用的各种编程语言。关键词机器学习 人工智能 计算技术 历史经验 学习实例 监督学习 非监督学习 强化学习 编程语言 机器学习应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancements in Machine Learning: A Comprehensive Exploration of Methods, Applications, and Future Perspectives
Machine learning, a specialized subset of artificial intelligence, imparts the ability to machines to learn, while artificial intelligence (AI) encompasses the broader field dedicated to emulating human capabilities. Within AI, machine learning employs computational techniques to instruct computers on learning from their historical experiences. Unlike models based on predetermined equations, machine learning algorithms derive insights directly from data, progressively improving their performance as the volume of learning examples grows. This paper presents a comprehensive overview of the domain, exploring diverse machine learning methodologies such as supervised, unsupervised, and reinforcement learning, along with an examination of various programming languages employed in machine learning applications. Keywords: Machine learning, Artificial intelligence, Computational techniques, Historical experiences, Learning examples, Supervised learning, Unsupervised learning, Reinforcement learning, Programming languages, Machine learning applications
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on low power ADC Design using Memristor on Embedded systems A Study on Unified Modelling Approach for Memristor: Next Generation Semiconductor Devices Design and Analysis of the Exhaust Muffler for Two-Wheeler Vehicle Intelligent Space: Enhancing Living Environment with Smart Technology (Smart Room) Smart Waste Management System Using IoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1