T. Phan, San-Lang Wang, T. Nguyen, T. Nguyen, Thi Huyen Thoa Pham, M. Doan, Thi Ha Trang Tran, V. Ngo, A. Nguyen, V. Nguyen
{"title":"利用木薯淀粉加工副产品生物生产 1-羟基哒嗪:一种新型杀真菌剂,可防治镰孢菌","authors":"T. Phan, San-Lang Wang, T. Nguyen, T. Nguyen, Thi Huyen Thoa Pham, M. Doan, Thi Ha Trang Tran, V. Ngo, A. Nguyen, V. Nguyen","doi":"10.3390/recycling9010012","DOIUrl":null,"url":null,"abstract":"This study aimed to develop the eco-friendly production of bioactive 1-hydroxyphenazine (HP) through fermentation using an industrial processing by-product of cassava as the main carbon/nitrogen source. Cassava starch processing by-product (CSPB) was screened as a suitable substrate for fermentation to produce HP with a high yield. Mixing CSPB with a minor amount of tryptic soy broth (TSB) at a ratio of 8/2 and with 0.05% K2HPO4 and 0.05% FeSO4 was effective in HP production by Pseudomonas aeruginosa TUN03. HP was also further scaled up through production on a bioreactor system, which achieved a higher level yield (36.5 µg/mL) in a shorter fermentation time (10 h) compared to its production in the flask (20.23 µg/mL after 3 days). In anti-fungal activity tests against various Fusarium phytopathogens, HP exhibited the most significant effect on Fusarium oxysporum F10. It could inhibit the mycelial growth of this fungus, with an inhibition rate of 68.7% and anti-spore germination activity of up to 98.4%. The results of the docking study indicate that HP effectively interacted with the protein 1TRY targeting anti-F. oxysporum, with all obtained docking parameters in the accepted range. This study supports the novel use of CSPB as the carbon/nitrogen source for P. aeruginosa fermentation to produce HP, a F. oxysporum anti-fungal agent reported here for the first time.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Cassava Starch Processing By-Product for Bioproduction of 1-Hydroxyphenazine: A Novel Fungicide against Fusarium oxysporum\",\"authors\":\"T. Phan, San-Lang Wang, T. Nguyen, T. Nguyen, Thi Huyen Thoa Pham, M. Doan, Thi Ha Trang Tran, V. Ngo, A. Nguyen, V. Nguyen\",\"doi\":\"10.3390/recycling9010012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to develop the eco-friendly production of bioactive 1-hydroxyphenazine (HP) through fermentation using an industrial processing by-product of cassava as the main carbon/nitrogen source. Cassava starch processing by-product (CSPB) was screened as a suitable substrate for fermentation to produce HP with a high yield. Mixing CSPB with a minor amount of tryptic soy broth (TSB) at a ratio of 8/2 and with 0.05% K2HPO4 and 0.05% FeSO4 was effective in HP production by Pseudomonas aeruginosa TUN03. HP was also further scaled up through production on a bioreactor system, which achieved a higher level yield (36.5 µg/mL) in a shorter fermentation time (10 h) compared to its production in the flask (20.23 µg/mL after 3 days). In anti-fungal activity tests against various Fusarium phytopathogens, HP exhibited the most significant effect on Fusarium oxysporum F10. It could inhibit the mycelial growth of this fungus, with an inhibition rate of 68.7% and anti-spore germination activity of up to 98.4%. The results of the docking study indicate that HP effectively interacted with the protein 1TRY targeting anti-F. oxysporum, with all obtained docking parameters in the accepted range. This study supports the novel use of CSPB as the carbon/nitrogen source for P. aeruginosa fermentation to produce HP, a F. oxysporum anti-fungal agent reported here for the first time.\",\"PeriodicalId\":36729,\"journal\":{\"name\":\"Recycling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recycling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/recycling9010012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/recycling9010012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Using Cassava Starch Processing By-Product for Bioproduction of 1-Hydroxyphenazine: A Novel Fungicide against Fusarium oxysporum
This study aimed to develop the eco-friendly production of bioactive 1-hydroxyphenazine (HP) through fermentation using an industrial processing by-product of cassava as the main carbon/nitrogen source. Cassava starch processing by-product (CSPB) was screened as a suitable substrate for fermentation to produce HP with a high yield. Mixing CSPB with a minor amount of tryptic soy broth (TSB) at a ratio of 8/2 and with 0.05% K2HPO4 and 0.05% FeSO4 was effective in HP production by Pseudomonas aeruginosa TUN03. HP was also further scaled up through production on a bioreactor system, which achieved a higher level yield (36.5 µg/mL) in a shorter fermentation time (10 h) compared to its production in the flask (20.23 µg/mL after 3 days). In anti-fungal activity tests against various Fusarium phytopathogens, HP exhibited the most significant effect on Fusarium oxysporum F10. It could inhibit the mycelial growth of this fungus, with an inhibition rate of 68.7% and anti-spore germination activity of up to 98.4%. The results of the docking study indicate that HP effectively interacted with the protein 1TRY targeting anti-F. oxysporum, with all obtained docking parameters in the accepted range. This study supports the novel use of CSPB as the carbon/nitrogen source for P. aeruginosa fermentation to produce HP, a F. oxysporum anti-fungal agent reported here for the first time.