低频动态磁场减少细胞对磁性纳米粒子的吸收

IF 2.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Magnetochemistry Pub Date : 2024-02-01 DOI:10.3390/magnetochemistry10020009
A. Ivanova, Nelly S. Chmelyuk, A. Nikitin, Alexander G. Majouga, V. Chekhonin, M. Abakumov
{"title":"低频动态磁场减少细胞对磁性纳米粒子的吸收","authors":"A. Ivanova, Nelly S. Chmelyuk, A. Nikitin, Alexander G. Majouga, V. Chekhonin, M. Abakumov","doi":"10.3390/magnetochemistry10020009","DOIUrl":null,"url":null,"abstract":"Magnetic nanoparticles have gained attention as a potential structure for therapy and diagnosing oncological diseases. The key property of the magnetic nanoparticles is the ability to respond to an external magnetic field. It is known that magnetofection causes an increase in the cellular uptake of RNA and DNA in complexes with magnetic nanoparticles in the presence of a permanent magnetic field. However, the influence of a dynamic magnetic field on the internalization of MNPs is not clear. In this work, we propose the idea that applying external low-frequency dynamic magnetic fields may decrease the cellular uptake, such as macrophages and malignant neuroblastoma. Using fluorescence microscopy and atomic emission spectroscopy, we found that oscillating magnetic fields decreased the cellular uptake of magnetic nanoparticles compared to untreated cells by up to 46%. In SH-SY5Y tumor cells and macrophage RAW264.7 cells, the absolute values of Fe per cell differed by 0.10 pg/cell and 0.33 pg/cell between treated and untreated cells, respectively. These results can be applied in the control of the cellular uptake in different areas of biomedicine.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Frequency Dynamic Magnetic Fields Decrease Cellular Uptake of Magnetic Nanoparticles\",\"authors\":\"A. Ivanova, Nelly S. Chmelyuk, A. Nikitin, Alexander G. Majouga, V. Chekhonin, M. Abakumov\",\"doi\":\"10.3390/magnetochemistry10020009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic nanoparticles have gained attention as a potential structure for therapy and diagnosing oncological diseases. The key property of the magnetic nanoparticles is the ability to respond to an external magnetic field. It is known that magnetofection causes an increase in the cellular uptake of RNA and DNA in complexes with magnetic nanoparticles in the presence of a permanent magnetic field. However, the influence of a dynamic magnetic field on the internalization of MNPs is not clear. In this work, we propose the idea that applying external low-frequency dynamic magnetic fields may decrease the cellular uptake, such as macrophages and malignant neuroblastoma. Using fluorescence microscopy and atomic emission spectroscopy, we found that oscillating magnetic fields decreased the cellular uptake of magnetic nanoparticles compared to untreated cells by up to 46%. In SH-SY5Y tumor cells and macrophage RAW264.7 cells, the absolute values of Fe per cell differed by 0.10 pg/cell and 0.33 pg/cell between treated and untreated cells, respectively. These results can be applied in the control of the cellular uptake in different areas of biomedicine.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry10020009\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry10020009","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

磁性纳米粒子作为一种治疗和诊断肿瘤疾病的潜在结构,已受到广泛关注。磁性纳米粒子的关键特性是对外部磁场的反应能力。众所周知,在永久磁场存在的情况下,磁感染会增加细胞对磁性纳米粒子复合物中 RNA 和 DNA 的吸收。然而,动态磁场对 MNPs 内化的影响尚不清楚。在这项工作中,我们提出了外部低频动态磁场可能会减少细胞摄取(如巨噬细胞和恶性神经母细胞瘤)的观点。我们利用荧光显微镜和原子发射光谱发现,与未经处理的细胞相比,振荡磁场可使细胞对磁性纳米粒子的吸收率降低达 46%。在 SH-SY5Y 肿瘤细胞和 RAW264.7 巨噬细胞中,处理过的细胞和未处理的细胞中每个细胞铁的绝对值分别相差 0.10 pg/cell 和 0.33 pg/cell。这些结果可用于控制生物医学不同领域的细胞吸收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Frequency Dynamic Magnetic Fields Decrease Cellular Uptake of Magnetic Nanoparticles
Magnetic nanoparticles have gained attention as a potential structure for therapy and diagnosing oncological diseases. The key property of the magnetic nanoparticles is the ability to respond to an external magnetic field. It is known that magnetofection causes an increase in the cellular uptake of RNA and DNA in complexes with magnetic nanoparticles in the presence of a permanent magnetic field. However, the influence of a dynamic magnetic field on the internalization of MNPs is not clear. In this work, we propose the idea that applying external low-frequency dynamic magnetic fields may decrease the cellular uptake, such as macrophages and malignant neuroblastoma. Using fluorescence microscopy and atomic emission spectroscopy, we found that oscillating magnetic fields decreased the cellular uptake of magnetic nanoparticles compared to untreated cells by up to 46%. In SH-SY5Y tumor cells and macrophage RAW264.7 cells, the absolute values of Fe per cell differed by 0.10 pg/cell and 0.33 pg/cell between treated and untreated cells, respectively. These results can be applied in the control of the cellular uptake in different areas of biomedicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Magnetochemistry
Magnetochemistry Chemistry-Chemistry (miscellaneous)
CiteScore
3.90
自引率
11.10%
发文量
145
审稿时长
11 weeks
期刊介绍: Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Band Structure Calculations, Magnetic Properties and Magnetocaloric Effect of GdCo1.8M0.2 Compounds with M = Fe, Mn, Cu, Al Magnetic Substrates for Tissue Engineering—A Review Impact of the Different Molecular Weights of Polyethylene Glycol (PEG) Coating Agents on the Magnetic Targeting Characteristics of Functionalized Magnetoresponsive Nanoclusters Magnon Excitation Modes in Ferromagnetic and Antiferromagnetic Systems Synergistic Effect of Magnetic Iron Oxide Nanoparticles with Medicinal Plant Extracts against Resistant Bacterial Strains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1