Yangyang Mo , Alfonso Rodriguez-Dono , Sebastia Olivella
{"title":"使用不同元素类型对粘土基材料中的气体注入进行水力机械耦合分析","authors":"Yangyang Mo , Alfonso Rodriguez-Dono , Sebastia Olivella","doi":"10.1016/j.gete.2024.100541","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the impact of various factors on HM-coupled geological media through a multi-category analysis of the so-called Heat and Gas Fracking model (HGFRAC) and the so-called Gas Threshold Pressure Test (GTPT). The HGFRAC model consists of six different types of benchmark exercises. It is important to note that different types of elements and integration methods used in finite element simulations can influence the obtained results. Comparing the results of quadrilateral and triangle elements, it is observed that the quadrilateral element, due to its bi-linear gradient characteristic, produces a more stable stress field compared to the linear triangle element. The computational efficiency of the HGFRAC model has been improved due to the introduction of the selective integration method for quadrilateral elements. This is because the standard integration method lacks stability and is prone to locking effects, which leads to convergence problems. Additionally, sensitivity analyses have been performed on the fluidity parameter of the clay material, which controls the viscoplastic deformations. Further analysis of the response of quadrilateral elements, using the GTPT axisymmetric model, reveals that the integration method on Gauss points may cause convergence issues. These issues can be resolved by introducing the nodal point integration method, the selective integration method or a combination of both. In general, when dealing with HM-coupled gas injection problems, the use of selective integration enhances stability and cost-efficiency in calculations. Although the integration method on nodal points can resolve convergence issues in the GTPT model, it is worth noting that the calculation results can still be affected by locking effects.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"38 ","pages":"Article 100541"},"PeriodicalIF":3.3000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235238082400008X/pdfft?md5=4e199926ae8e5dbbae7a1cb2765998f5&pid=1-s2.0-S235238082400008X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hydro-Mechanical coupled analysis of gas injection in clay-based materials using different element types\",\"authors\":\"Yangyang Mo , Alfonso Rodriguez-Dono , Sebastia Olivella\",\"doi\":\"10.1016/j.gete.2024.100541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the impact of various factors on HM-coupled geological media through a multi-category analysis of the so-called Heat and Gas Fracking model (HGFRAC) and the so-called Gas Threshold Pressure Test (GTPT). The HGFRAC model consists of six different types of benchmark exercises. It is important to note that different types of elements and integration methods used in finite element simulations can influence the obtained results. Comparing the results of quadrilateral and triangle elements, it is observed that the quadrilateral element, due to its bi-linear gradient characteristic, produces a more stable stress field compared to the linear triangle element. The computational efficiency of the HGFRAC model has been improved due to the introduction of the selective integration method for quadrilateral elements. This is because the standard integration method lacks stability and is prone to locking effects, which leads to convergence problems. Additionally, sensitivity analyses have been performed on the fluidity parameter of the clay material, which controls the viscoplastic deformations. Further analysis of the response of quadrilateral elements, using the GTPT axisymmetric model, reveals that the integration method on Gauss points may cause convergence issues. These issues can be resolved by introducing the nodal point integration method, the selective integration method or a combination of both. In general, when dealing with HM-coupled gas injection problems, the use of selective integration enhances stability and cost-efficiency in calculations. Although the integration method on nodal points can resolve convergence issues in the GTPT model, it is worth noting that the calculation results can still be affected by locking effects.</p></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"38 \",\"pages\":\"Article 100541\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S235238082400008X/pdfft?md5=4e199926ae8e5dbbae7a1cb2765998f5&pid=1-s2.0-S235238082400008X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235238082400008X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235238082400008X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Hydro-Mechanical coupled analysis of gas injection in clay-based materials using different element types
This study investigates the impact of various factors on HM-coupled geological media through a multi-category analysis of the so-called Heat and Gas Fracking model (HGFRAC) and the so-called Gas Threshold Pressure Test (GTPT). The HGFRAC model consists of six different types of benchmark exercises. It is important to note that different types of elements and integration methods used in finite element simulations can influence the obtained results. Comparing the results of quadrilateral and triangle elements, it is observed that the quadrilateral element, due to its bi-linear gradient characteristic, produces a more stable stress field compared to the linear triangle element. The computational efficiency of the HGFRAC model has been improved due to the introduction of the selective integration method for quadrilateral elements. This is because the standard integration method lacks stability and is prone to locking effects, which leads to convergence problems. Additionally, sensitivity analyses have been performed on the fluidity parameter of the clay material, which controls the viscoplastic deformations. Further analysis of the response of quadrilateral elements, using the GTPT axisymmetric model, reveals that the integration method on Gauss points may cause convergence issues. These issues can be resolved by introducing the nodal point integration method, the selective integration method or a combination of both. In general, when dealing with HM-coupled gas injection problems, the use of selective integration enhances stability and cost-efficiency in calculations. Although the integration method on nodal points can resolve convergence issues in the GTPT model, it is worth noting that the calculation results can still be affected by locking effects.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.