道路交通标志的预测模型:逆反射状态、逆反射系数和使用寿命

Roxan Saleh , Hasan Fleyeh
{"title":"道路交通标志的预测模型:逆反射状态、逆反射系数和使用寿命","authors":"Roxan Saleh ,&nbsp;Hasan Fleyeh","doi":"10.1016/j.ijtst.2024.02.008","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the critical safety issue of declining retroreflectivity values of road traffic signs, which can lead to unsafe driving conditions, especially at night. The paper aims to predict the retroreflectivity coefficient values of these signs and to classify their status as acceptable or rejected (in need of replacement) using machine learning models. Moreover, logistic regression and survival analysis are used to predict the median lifespans of road traffic signs across various geographical locations, focusing on signs in Croatia and Sweden as case studies. The results indicate high accuracy in the predictive models, with classification accuracy at 94% and an <em>R</em><sup>2</sup> value of 94% for regression analysis. A significant finding is that a considerable number of signs maintain acceptable retroreflectivity levels within their warranty period, suggesting the feasibility of extending maintenance checks and warranty periods to 15 years which is longer than the current standard of 10 years. Additionally, the study reveals notable variations in the median lifespans of signs based on color and location. Blue signs in Croatia and Sweden exhibit the longest median lifespans (28 to 35 years), whereas white signs in Sweden and red signs in Croatia show the shortest (16 and 10 years, respectively). The high accuracy of logistic regression models (72–90%) for lifespan prediction confirms the effectiveness of this approach. These findings provide valuable insights for road authorities regarding the maintenance and management of road traffic signs, enhancing road safety standards.</div></div>","PeriodicalId":52282,"journal":{"name":"International Journal of Transportation Science and Technology","volume":"16 ","pages":"Pages 276-291"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive models for road traffic sign: Retroreflectivity status, retroreflectivity coefficient, and lifespan\",\"authors\":\"Roxan Saleh ,&nbsp;Hasan Fleyeh\",\"doi\":\"10.1016/j.ijtst.2024.02.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study addresses the critical safety issue of declining retroreflectivity values of road traffic signs, which can lead to unsafe driving conditions, especially at night. The paper aims to predict the retroreflectivity coefficient values of these signs and to classify their status as acceptable or rejected (in need of replacement) using machine learning models. Moreover, logistic regression and survival analysis are used to predict the median lifespans of road traffic signs across various geographical locations, focusing on signs in Croatia and Sweden as case studies. The results indicate high accuracy in the predictive models, with classification accuracy at 94% and an <em>R</em><sup>2</sup> value of 94% for regression analysis. A significant finding is that a considerable number of signs maintain acceptable retroreflectivity levels within their warranty period, suggesting the feasibility of extending maintenance checks and warranty periods to 15 years which is longer than the current standard of 10 years. Additionally, the study reveals notable variations in the median lifespans of signs based on color and location. Blue signs in Croatia and Sweden exhibit the longest median lifespans (28 to 35 years), whereas white signs in Sweden and red signs in Croatia show the shortest (16 and 10 years, respectively). The high accuracy of logistic regression models (72–90%) for lifespan prediction confirms the effectiveness of this approach. These findings provide valuable insights for road authorities regarding the maintenance and management of road traffic signs, enhancing road safety standards.</div></div>\",\"PeriodicalId\":52282,\"journal\":{\"name\":\"International Journal of Transportation Science and Technology\",\"volume\":\"16 \",\"pages\":\"Pages 276-291\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Transportation Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2046043024000182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transportation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2046043024000182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive models for road traffic sign: Retroreflectivity status, retroreflectivity coefficient, and lifespan
This study addresses the critical safety issue of declining retroreflectivity values of road traffic signs, which can lead to unsafe driving conditions, especially at night. The paper aims to predict the retroreflectivity coefficient values of these signs and to classify their status as acceptable or rejected (in need of replacement) using machine learning models. Moreover, logistic regression and survival analysis are used to predict the median lifespans of road traffic signs across various geographical locations, focusing on signs in Croatia and Sweden as case studies. The results indicate high accuracy in the predictive models, with classification accuracy at 94% and an R2 value of 94% for regression analysis. A significant finding is that a considerable number of signs maintain acceptable retroreflectivity levels within their warranty period, suggesting the feasibility of extending maintenance checks and warranty periods to 15 years which is longer than the current standard of 10 years. Additionally, the study reveals notable variations in the median lifespans of signs based on color and location. Blue signs in Croatia and Sweden exhibit the longest median lifespans (28 to 35 years), whereas white signs in Sweden and red signs in Croatia show the shortest (16 and 10 years, respectively). The high accuracy of logistic regression models (72–90%) for lifespan prediction confirms the effectiveness of this approach. These findings provide valuable insights for road authorities regarding the maintenance and management of road traffic signs, enhancing road safety standards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Transportation Science and Technology
International Journal of Transportation Science and Technology Engineering-Civil and Structural Engineering
CiteScore
7.20
自引率
0.00%
发文量
105
审稿时长
88 days
期刊最新文献
Comparing the vibrational behavior of e-kick scooters and e-bikes: Evidence from Italy Injury severity of drowsy drivers involved in single vehicle crashes: Accounting for temporal instability and unobserved heterogeneity Train rescheduling and platforming in large high-speed railway stations Characteristics and identification of risky driving behaviors in expressway tunnels based on behavior spectrum Performance evaluation of Bailey method used in asphalt mixtures containing natural river sands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1