丝氨酸-苏氨酸蛋白激酶 Snf1 可协调植物细胞壁降解酶的表达,是玉米病原体禾谷壳霉(Colletotrichum graminicola)具有完全毒力的必要条件

IF 2.4 3区 生物学 Q3 GENETICS & HEREDITY Fungal Genetics and Biology Pub Date : 2024-02-15 DOI:10.1016/j.fgb.2024.103876
Alan de Oliveira Silva , Bennet Rohan Fernando Devasahayam , Lala Aliyeva-Schnorr , Chirlei Glienke , Holger B. Deising
{"title":"丝氨酸-苏氨酸蛋白激酶 Snf1 可协调植物细胞壁降解酶的表达,是玉米病原体禾谷壳霉(Colletotrichum graminicola)具有完全毒力的必要条件","authors":"Alan de Oliveira Silva ,&nbsp;Bennet Rohan Fernando Devasahayam ,&nbsp;Lala Aliyeva-Schnorr ,&nbsp;Chirlei Glienke ,&nbsp;Holger B. Deising","doi":"10.1016/j.fgb.2024.103876","DOIUrl":null,"url":null,"abstract":"<div><p>Colletotrichum graminicola, the causal agent of maize leaf anthracnose and stalk rot, differentiates a pressurized infection cell called an appressorium in order to invade the epidermal cell, and subsequently forms biotrophic and necrotrophic hyphae to colonize the host tissue. While the role of force in appressorial penetration is established (<span>Bechinger et al., 1999</span>), the involvement of cell wall-degrading enzymes (CWDEs) in this process and in tissue colonization is poorly understood, due to the enormous number and functional redundancy of these enzymes. The serine/threonine protein kinase gene <em>SNF1</em> identified in Sucrose Non-Fermenting yeast mutants mediates de-repression of catabolite-repressed genes, including many genes encoding CWDEs. In this study, we identified and functionally characterized the <em>SNF1</em> homolog of <em>C. graminicola</em>. Δ<em>snf1</em> mutants showed reduced vegetative growth and asexual sporulation rates on media containing polymeric carbon sources. Microscopy revealed reduced efficacies in appressorial penetration of cuticle and epidermal cell wall, and formation of unusual medusa-like biotrophic hyphae by Δ<em>snf1</em> mutants. Severe and moderate virulence reductions were observed on intact and wounded leaves, respectively. Employing RNA-sequencing we show for the first time that more than 2,500 genes are directly or indirectly controlled by Snf1 in necrotrophic hyphae of a plant pathogenic fungus, many of which encode xylan- and cellulose-degrading enzymes. The data presented show that Snf1 is a global regulator of gene expression and is required for full virulence.</p></div>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":"171 ","pages":"Article 103876"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The serine-threonine protein kinase Snf1 orchestrates the expression of plant cell wall-degrading enzymes and is required for full virulence of the maize pathogen Colletotrichum graminicola\",\"authors\":\"Alan de Oliveira Silva ,&nbsp;Bennet Rohan Fernando Devasahayam ,&nbsp;Lala Aliyeva-Schnorr ,&nbsp;Chirlei Glienke ,&nbsp;Holger B. Deising\",\"doi\":\"10.1016/j.fgb.2024.103876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Colletotrichum graminicola, the causal agent of maize leaf anthracnose and stalk rot, differentiates a pressurized infection cell called an appressorium in order to invade the epidermal cell, and subsequently forms biotrophic and necrotrophic hyphae to colonize the host tissue. While the role of force in appressorial penetration is established (<span>Bechinger et al., 1999</span>), the involvement of cell wall-degrading enzymes (CWDEs) in this process and in tissue colonization is poorly understood, due to the enormous number and functional redundancy of these enzymes. The serine/threonine protein kinase gene <em>SNF1</em> identified in Sucrose Non-Fermenting yeast mutants mediates de-repression of catabolite-repressed genes, including many genes encoding CWDEs. In this study, we identified and functionally characterized the <em>SNF1</em> homolog of <em>C. graminicola</em>. Δ<em>snf1</em> mutants showed reduced vegetative growth and asexual sporulation rates on media containing polymeric carbon sources. Microscopy revealed reduced efficacies in appressorial penetration of cuticle and epidermal cell wall, and formation of unusual medusa-like biotrophic hyphae by Δ<em>snf1</em> mutants. Severe and moderate virulence reductions were observed on intact and wounded leaves, respectively. Employing RNA-sequencing we show for the first time that more than 2,500 genes are directly or indirectly controlled by Snf1 in necrotrophic hyphae of a plant pathogenic fungus, many of which encode xylan- and cellulose-degrading enzymes. The data presented show that Snf1 is a global regulator of gene expression and is required for full virulence.</p></div>\",\"PeriodicalId\":55135,\"journal\":{\"name\":\"Fungal Genetics and Biology\",\"volume\":\"171 \",\"pages\":\"Article 103876\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Genetics and Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1087184524000136\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1087184524000136","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

玉米叶炭疽病和茎腐病的病原菌禾谷壳霉(Colletotrichum graminicola)会分化出一个加压感染细胞,称为附着体(appressorium),以便侵入表皮细胞,随后形成生物营养性和坏死性菌丝,在寄主组织中定植。虽然力在附着体穿透中的作用已经确定(Bechinger 等人,1999 年),但细胞壁降解酶(CWDEs)在这一过程和组织定殖中的参与却鲜为人知,原因是这些酶的数量巨大且功能冗余。在蔗糖不发酵酵母突变体中发现的丝氨酸/苏氨酸蛋白激酶基因 SNF1 能介导分解石抑制基因(包括许多编码 CWDEs 的基因)的去抑制作用。在这项研究中,我们鉴定并从功能上描述了禾谷酵母的 SNF1 同源物。Δsnf1突变体在含有聚合碳源的培养基上表现出无性生长和无性孢子繁殖率降低。显微镜检查发现,Δsnf1突变体对角质层和表皮细胞壁的附着穿透效率降低,并形成了不寻常的中轴样生物营养菌丝。在完整叶片和受伤叶片上分别观察到严重和中等程度的毒力降低。通过 RNA 测序,我们首次发现在植物病原真菌的坏死菌丝中有 2,500 多个基因直接或间接受 Snf1 控制,其中许多基因编码木聚糖和纤维素降解酶。所提供的数据表明,Snf1 是基因表达的全球调控因子,是完全毒力所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The serine-threonine protein kinase Snf1 orchestrates the expression of plant cell wall-degrading enzymes and is required for full virulence of the maize pathogen Colletotrichum graminicola

Colletotrichum graminicola, the causal agent of maize leaf anthracnose and stalk rot, differentiates a pressurized infection cell called an appressorium in order to invade the epidermal cell, and subsequently forms biotrophic and necrotrophic hyphae to colonize the host tissue. While the role of force in appressorial penetration is established (Bechinger et al., 1999), the involvement of cell wall-degrading enzymes (CWDEs) in this process and in tissue colonization is poorly understood, due to the enormous number and functional redundancy of these enzymes. The serine/threonine protein kinase gene SNF1 identified in Sucrose Non-Fermenting yeast mutants mediates de-repression of catabolite-repressed genes, including many genes encoding CWDEs. In this study, we identified and functionally characterized the SNF1 homolog of C. graminicola. Δsnf1 mutants showed reduced vegetative growth and asexual sporulation rates on media containing polymeric carbon sources. Microscopy revealed reduced efficacies in appressorial penetration of cuticle and epidermal cell wall, and formation of unusual medusa-like biotrophic hyphae by Δsnf1 mutants. Severe and moderate virulence reductions were observed on intact and wounded leaves, respectively. Employing RNA-sequencing we show for the first time that more than 2,500 genes are directly or indirectly controlled by Snf1 in necrotrophic hyphae of a plant pathogenic fungus, many of which encode xylan- and cellulose-degrading enzymes. The data presented show that Snf1 is a global regulator of gene expression and is required for full virulence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fungal Genetics and Biology
Fungal Genetics and Biology 生物-遗传学
CiteScore
6.20
自引率
3.30%
发文量
66
审稿时长
85 days
期刊介绍: Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny. Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists. Research Areas include: • Biochemistry • Cytology • Developmental biology • Evolutionary biology • Genetics • Molecular biology • Phylogeny • Physiology.
期刊最新文献
Physical forces supporting hyphal growth. Global transcriptome changes during growth of a novel Penicillium coffeae isolate on the wheat stripe rust fungus, Puccinia striiformis f. sp. tritici. The sensor protein VdSLN1 is involved in regulating melanin biosynthesis and pathogenicity via MAPK pathway in Verticillium dahliae. Zymocin-like killer toxin gene clusters in the nuclear genomes of filamentous fungi. Separation of life stages within anaerobic fungi (Neocallimastigomycota) highlights differences in global transcription and metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1