Alan de Oliveira Silva , Bennet Rohan Fernando Devasahayam , Lala Aliyeva-Schnorr , Chirlei Glienke , Holger B. Deising
{"title":"丝氨酸-苏氨酸蛋白激酶 Snf1 可协调植物细胞壁降解酶的表达,是玉米病原体禾谷壳霉(Colletotrichum graminicola)具有完全毒力的必要条件","authors":"Alan de Oliveira Silva , Bennet Rohan Fernando Devasahayam , Lala Aliyeva-Schnorr , Chirlei Glienke , Holger B. Deising","doi":"10.1016/j.fgb.2024.103876","DOIUrl":null,"url":null,"abstract":"<div><p>Colletotrichum graminicola, the causal agent of maize leaf anthracnose and stalk rot, differentiates a pressurized infection cell called an appressorium in order to invade the epidermal cell, and subsequently forms biotrophic and necrotrophic hyphae to colonize the host tissue. While the role of force in appressorial penetration is established (<span>Bechinger et al., 1999</span>), the involvement of cell wall-degrading enzymes (CWDEs) in this process and in tissue colonization is poorly understood, due to the enormous number and functional redundancy of these enzymes. The serine/threonine protein kinase gene <em>SNF1</em> identified in Sucrose Non-Fermenting yeast mutants mediates de-repression of catabolite-repressed genes, including many genes encoding CWDEs. In this study, we identified and functionally characterized the <em>SNF1</em> homolog of <em>C. graminicola</em>. Δ<em>snf1</em> mutants showed reduced vegetative growth and asexual sporulation rates on media containing polymeric carbon sources. Microscopy revealed reduced efficacies in appressorial penetration of cuticle and epidermal cell wall, and formation of unusual medusa-like biotrophic hyphae by Δ<em>snf1</em> mutants. Severe and moderate virulence reductions were observed on intact and wounded leaves, respectively. Employing RNA-sequencing we show for the first time that more than 2,500 genes are directly or indirectly controlled by Snf1 in necrotrophic hyphae of a plant pathogenic fungus, many of which encode xylan- and cellulose-degrading enzymes. The data presented show that Snf1 is a global regulator of gene expression and is required for full virulence.</p></div>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":"171 ","pages":"Article 103876"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The serine-threonine protein kinase Snf1 orchestrates the expression of plant cell wall-degrading enzymes and is required for full virulence of the maize pathogen Colletotrichum graminicola\",\"authors\":\"Alan de Oliveira Silva , Bennet Rohan Fernando Devasahayam , Lala Aliyeva-Schnorr , Chirlei Glienke , Holger B. Deising\",\"doi\":\"10.1016/j.fgb.2024.103876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Colletotrichum graminicola, the causal agent of maize leaf anthracnose and stalk rot, differentiates a pressurized infection cell called an appressorium in order to invade the epidermal cell, and subsequently forms biotrophic and necrotrophic hyphae to colonize the host tissue. While the role of force in appressorial penetration is established (<span>Bechinger et al., 1999</span>), the involvement of cell wall-degrading enzymes (CWDEs) in this process and in tissue colonization is poorly understood, due to the enormous number and functional redundancy of these enzymes. The serine/threonine protein kinase gene <em>SNF1</em> identified in Sucrose Non-Fermenting yeast mutants mediates de-repression of catabolite-repressed genes, including many genes encoding CWDEs. In this study, we identified and functionally characterized the <em>SNF1</em> homolog of <em>C. graminicola</em>. Δ<em>snf1</em> mutants showed reduced vegetative growth and asexual sporulation rates on media containing polymeric carbon sources. Microscopy revealed reduced efficacies in appressorial penetration of cuticle and epidermal cell wall, and formation of unusual medusa-like biotrophic hyphae by Δ<em>snf1</em> mutants. Severe and moderate virulence reductions were observed on intact and wounded leaves, respectively. Employing RNA-sequencing we show for the first time that more than 2,500 genes are directly or indirectly controlled by Snf1 in necrotrophic hyphae of a plant pathogenic fungus, many of which encode xylan- and cellulose-degrading enzymes. The data presented show that Snf1 is a global regulator of gene expression and is required for full virulence.</p></div>\",\"PeriodicalId\":55135,\"journal\":{\"name\":\"Fungal Genetics and Biology\",\"volume\":\"171 \",\"pages\":\"Article 103876\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Genetics and Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1087184524000136\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1087184524000136","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The serine-threonine protein kinase Snf1 orchestrates the expression of plant cell wall-degrading enzymes and is required for full virulence of the maize pathogen Colletotrichum graminicola
Colletotrichum graminicola, the causal agent of maize leaf anthracnose and stalk rot, differentiates a pressurized infection cell called an appressorium in order to invade the epidermal cell, and subsequently forms biotrophic and necrotrophic hyphae to colonize the host tissue. While the role of force in appressorial penetration is established (Bechinger et al., 1999), the involvement of cell wall-degrading enzymes (CWDEs) in this process and in tissue colonization is poorly understood, due to the enormous number and functional redundancy of these enzymes. The serine/threonine protein kinase gene SNF1 identified in Sucrose Non-Fermenting yeast mutants mediates de-repression of catabolite-repressed genes, including many genes encoding CWDEs. In this study, we identified and functionally characterized the SNF1 homolog of C. graminicola. Δsnf1 mutants showed reduced vegetative growth and asexual sporulation rates on media containing polymeric carbon sources. Microscopy revealed reduced efficacies in appressorial penetration of cuticle and epidermal cell wall, and formation of unusual medusa-like biotrophic hyphae by Δsnf1 mutants. Severe and moderate virulence reductions were observed on intact and wounded leaves, respectively. Employing RNA-sequencing we show for the first time that more than 2,500 genes are directly or indirectly controlled by Snf1 in necrotrophic hyphae of a plant pathogenic fungus, many of which encode xylan- and cellulose-degrading enzymes. The data presented show that Snf1 is a global regulator of gene expression and is required for full virulence.
期刊介绍:
Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny.
Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists.
Research Areas include:
• Biochemistry
• Cytology
• Developmental biology
• Evolutionary biology
• Genetics
• Molecular biology
• Phylogeny
• Physiology.