M. Harsini, Ainy Nur Farida, E. Fitriany, Denok.R. A. Paramita, A. Baktir, F. Kurniawan, S. Sakti, Yudhi Dwi Kurniawan, B. A. Widyaningrum
{"title":"使用聚丙烯酰胺/金纳米颗粒改性碳浆电极同时分析多巴胺和抗坏血酸","authors":"M. Harsini, Ainy Nur Farida, E. Fitriany, Denok.R. A. Paramita, A. Baktir, F. Kurniawan, S. Sakti, Yudhi Dwi Kurniawan, B. A. Widyaningrum","doi":"10.22146/ijc.83301","DOIUrl":null,"url":null,"abstract":"Modification of electrode using polymelamine (PM) and gold nanoparticles (AuNPs) has been successfully developed via electropolymerization and electrodeposition onto carbon paste electrode (CPE) using cyclic voltammetry (CV) technique. The modified electrode (AuNPs/PM/CPE) was applied as voltammetry sensors in a simultaneous of dopamine (DA) and ascorbic acid (AA). AuNPs/PM/CPE presented an effective surface area 5 times wider than CPE and demonstrated good electrocatalytic performance in the oxidation of DA and AA in 0.1 M phosphate buffer solution (pH 3) with a scan rate of 100 mV s−1. The differential pulse voltammetry (DPV) technique was chosen as the best method for separating potential peaks of DA and AA. The linear response for determining DA and AA using the DPV technique produced a concentration range of 0.1–13 and 0.4–12 µM with coefficient linearity of 0.9999 and 0.9997, the limit of detection of 0.1405 and 0.2187 µM, the accuracy of 89.62–109.16%, and 83.63–105.08%, and the precision of 0.017–0.701% and 0.066–0.626%, respectively. In addition, this electrode was applied in a real sample of infant urine with a concentration of 1 µM by spike method and found 98.86 and 98.28% as percent recovery of DA and AA, respectively.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Analysis of Dopamine and Ascorbic Acid Using Polymelamine/Gold Nanoparticle-Modified Carbon Paste Electrode\",\"authors\":\"M. Harsini, Ainy Nur Farida, E. Fitriany, Denok.R. A. Paramita, A. Baktir, F. Kurniawan, S. Sakti, Yudhi Dwi Kurniawan, B. A. Widyaningrum\",\"doi\":\"10.22146/ijc.83301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modification of electrode using polymelamine (PM) and gold nanoparticles (AuNPs) has been successfully developed via electropolymerization and electrodeposition onto carbon paste electrode (CPE) using cyclic voltammetry (CV) technique. The modified electrode (AuNPs/PM/CPE) was applied as voltammetry sensors in a simultaneous of dopamine (DA) and ascorbic acid (AA). AuNPs/PM/CPE presented an effective surface area 5 times wider than CPE and demonstrated good electrocatalytic performance in the oxidation of DA and AA in 0.1 M phosphate buffer solution (pH 3) with a scan rate of 100 mV s−1. The differential pulse voltammetry (DPV) technique was chosen as the best method for separating potential peaks of DA and AA. The linear response for determining DA and AA using the DPV technique produced a concentration range of 0.1–13 and 0.4–12 µM with coefficient linearity of 0.9999 and 0.9997, the limit of detection of 0.1405 and 0.2187 µM, the accuracy of 89.62–109.16%, and 83.63–105.08%, and the precision of 0.017–0.701% and 0.066–0.626%, respectively. In addition, this electrode was applied in a real sample of infant urine with a concentration of 1 µM by spike method and found 98.86 and 98.28% as percent recovery of DA and AA, respectively.\",\"PeriodicalId\":13515,\"journal\":{\"name\":\"Indonesian Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijc.83301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.83301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
利用循环伏安法(CV)技术,通过在碳糊电极(CPE)上进行电聚合和电沉积,成功开发出了使用聚梅拉明(PM)和金纳米颗粒(AuNPs)对电极进行改性的方法。修饰后的电极(AuNPs/PM/CPE)被用作伏安传感器,同时检测多巴胺(DA)和抗坏血酸(AA)。AuNPs/PM/CPE 的有效表面积是 CPE 的 5 倍,在 0.1 M 磷酸盐缓冲溶液(pH 3)中以 100 mV s-1 的扫描速率氧化 DA 和 AA 时表现出良好的电催化性能。微分脉冲伏安(DPV)技术被选为分离 DA 和 AA 电位峰的最佳方法。使用 DPV 技术测定 DA 和 AA 的线性响应浓度范围分别为 0.1-13 µM 和 0.4-12 µM,线性系数分别为 0.9999 和 0.9997,检出限分别为 0.1405 和 0.2187 µM,准确度分别为 89.62-109.16% 和 83.63-105.08%,精密度分别为 0.017-0.701% 和 0.066-0.626%。此外,还采用尖峰法对浓度为 1 µM 的婴儿尿液样本进行了分析,结果发现 DA 和 AA 的回收率分别为 98.86% 和 98.28%。
Simultaneous Analysis of Dopamine and Ascorbic Acid Using Polymelamine/Gold Nanoparticle-Modified Carbon Paste Electrode
Modification of electrode using polymelamine (PM) and gold nanoparticles (AuNPs) has been successfully developed via electropolymerization and electrodeposition onto carbon paste electrode (CPE) using cyclic voltammetry (CV) technique. The modified electrode (AuNPs/PM/CPE) was applied as voltammetry sensors in a simultaneous of dopamine (DA) and ascorbic acid (AA). AuNPs/PM/CPE presented an effective surface area 5 times wider than CPE and demonstrated good electrocatalytic performance in the oxidation of DA and AA in 0.1 M phosphate buffer solution (pH 3) with a scan rate of 100 mV s−1. The differential pulse voltammetry (DPV) technique was chosen as the best method for separating potential peaks of DA and AA. The linear response for determining DA and AA using the DPV technique produced a concentration range of 0.1–13 and 0.4–12 µM with coefficient linearity of 0.9999 and 0.9997, the limit of detection of 0.1405 and 0.2187 µM, the accuracy of 89.62–109.16%, and 83.63–105.08%, and the precision of 0.017–0.701% and 0.066–0.626%, respectively. In addition, this electrode was applied in a real sample of infant urine with a concentration of 1 µM by spike method and found 98.86 and 98.28% as percent recovery of DA and AA, respectively.
期刊介绍:
Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.