通过数据驱动方法监测计算机数控机床磨损情况

F. Gougam, A. Afia, MA Aitchikh, W. Touzout, C. Rahmoune, D. Benazzouz
{"title":"通过数据驱动方法监测计算机数控机床磨损情况","authors":"F. Gougam, A. Afia, MA Aitchikh, W. Touzout, C. Rahmoune, D. Benazzouz","doi":"10.1177/16878132241229314","DOIUrl":null,"url":null,"abstract":"The susceptibility of tools in Computer Numerical Control (CNC) machines makes them the most vulnerable elements in milling processes. The final product quality and the operations safety are directly influenced by the wear condition. To address this issue, the present paper introduces a hybrid approach incorporating feature extraction and optimized machine learning algorithms for tool wear prediction. The approach involves extracting a set of features from time-series signals obtained during the milling processes. These features allow the capture of valuable characteristics relating to the dynamic signal behavior. Subsequently, a feature selection process is proposed, employing Relief and intersection feature ranks. This step automatically identifies and selects the most pertinent features. Finally, an optimized support vector machine for regression (OSVR) is employed to predict the evolution of wear in machining tool cuts. The proposed method’s effectiveness is validated from three milling tool wear experiments. This validation includes comparative results with the Linear Regression (LR), Convolutional Neural Network (CNN), CNN-ResNet50, and Support Vector Regression (SVR) methods.","PeriodicalId":502561,"journal":{"name":"Advances in Mechanical Engineering","volume":"95 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer numerical control machine tool wear monitoring through a data-driven approach\",\"authors\":\"F. Gougam, A. Afia, MA Aitchikh, W. Touzout, C. Rahmoune, D. Benazzouz\",\"doi\":\"10.1177/16878132241229314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The susceptibility of tools in Computer Numerical Control (CNC) machines makes them the most vulnerable elements in milling processes. The final product quality and the operations safety are directly influenced by the wear condition. To address this issue, the present paper introduces a hybrid approach incorporating feature extraction and optimized machine learning algorithms for tool wear prediction. The approach involves extracting a set of features from time-series signals obtained during the milling processes. These features allow the capture of valuable characteristics relating to the dynamic signal behavior. Subsequently, a feature selection process is proposed, employing Relief and intersection feature ranks. This step automatically identifies and selects the most pertinent features. Finally, an optimized support vector machine for regression (OSVR) is employed to predict the evolution of wear in machining tool cuts. The proposed method’s effectiveness is validated from three milling tool wear experiments. This validation includes comparative results with the Linear Regression (LR), Convolutional Neural Network (CNN), CNN-ResNet50, and Support Vector Regression (SVR) methods.\",\"PeriodicalId\":502561,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\"95 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132241229314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132241229314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机数控(CNC)机床中刀具的易损性使其成为铣削过程中最脆弱的部件。磨损状况直接影响最终产品质量和操作安全。为解决这一问题,本文介绍了一种混合方法,将特征提取和优化的机器学习算法结合起来,用于刀具磨损预测。该方法包括从铣削过程中获得的时间序列信号中提取一组特征。这些特征可以捕捉到与动态信号行为相关的有价值的特征。随后,我们提出了一个特征选择过程,该过程采用了接力和交叉特征等级。该步骤可自动识别和选择最相关的特征。最后,采用优化的回归支持向量机(OSVR)来预测加工刀具切口的磨损演变。三个铣削刀具磨损实验验证了所提方法的有效性。验证结果包括与线性回归 (LR)、卷积神经网络 (CNN)、CNN-ResNet50 和支持向量回归 (SVR) 方法的比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computer numerical control machine tool wear monitoring through a data-driven approach
The susceptibility of tools in Computer Numerical Control (CNC) machines makes them the most vulnerable elements in milling processes. The final product quality and the operations safety are directly influenced by the wear condition. To address this issue, the present paper introduces a hybrid approach incorporating feature extraction and optimized machine learning algorithms for tool wear prediction. The approach involves extracting a set of features from time-series signals obtained during the milling processes. These features allow the capture of valuable characteristics relating to the dynamic signal behavior. Subsequently, a feature selection process is proposed, employing Relief and intersection feature ranks. This step automatically identifies and selects the most pertinent features. Finally, an optimized support vector machine for regression (OSVR) is employed to predict the evolution of wear in machining tool cuts. The proposed method’s effectiveness is validated from three milling tool wear experiments. This validation includes comparative results with the Linear Regression (LR), Convolutional Neural Network (CNN), CNN-ResNet50, and Support Vector Regression (SVR) methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of Al2O3 nanoparticle concentration and cutting parameters in hard milling under nanofluid MQL environment Analysis of the valve positioner pilot valve hole plugging Integrated design of insertions-extractions performance and contact reliability of spring-wire socket electrical connector Wear mechanisms of diamond segmenta in cutting of carbon fiber reinforced cement-based composite and optimizing in parameters Thermal transport exploration of ternary hybrid nanofluid flow in a non-Newtonian model with homogeneous-heterogeneous chemical reactions induced by vertical cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1