Mustafa A. Aldeeb, Sharif Abu Darda, Vahid Damideh, Isaac Hassen, Hossam A. Gabbar
{"title":"分析用于废物处理应用的射频-ICP 火炬的基本特征和最佳运行参数","authors":"Mustafa A. Aldeeb, Sharif Abu Darda, Vahid Damideh, Isaac Hassen, Hossam A. Gabbar","doi":"10.3390/recycling9010020","DOIUrl":null,"url":null,"abstract":"Recently, plasma-based pyrolysis has gained increasing prominence as a technology in response to the growing challenges in waste disposal and the recognition of opportunities to generate valuable by-products. The efficiency of the pyrolysis process is intricately tied to the characteristics of the plasma involved, particularly the effective electron temperature (Teff) and plasma density (ne). This study aimed to conduct a comprehensive examination of the essential features and optimal operational parameters of a developed RF-ICP torch specifically designed for small-scale municipal solid waste (MSW) pyrolysis (mixture of paper and polypropylene) with the goal of controlling both the torch and the overall process. Using optical emission spectroscopy (OES), we measured plasma parameters, specifically (Teff) and (ne), while varying argon gas flow rates and RF powers. The (Teff) and (ne)were determined using the Boltzmann plot and Stark broadening, respectively. The RF torch was found to generate (ne) up to approximately 2.8×1020 cm−3 and (Teff) up to around 8200 K, with both parameters being controlled by the discharge power and gas flow rate. Additionally, a power-losing mechanism, namely the anomalous skin effect, was detected during the study, which is uncommon in atmospheric plasma discharge.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Essential Features and Optimal Operational Parameters of an RF-ICP Torch for Waste Treatment Applications\",\"authors\":\"Mustafa A. Aldeeb, Sharif Abu Darda, Vahid Damideh, Isaac Hassen, Hossam A. Gabbar\",\"doi\":\"10.3390/recycling9010020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, plasma-based pyrolysis has gained increasing prominence as a technology in response to the growing challenges in waste disposal and the recognition of opportunities to generate valuable by-products. The efficiency of the pyrolysis process is intricately tied to the characteristics of the plasma involved, particularly the effective electron temperature (Teff) and plasma density (ne). This study aimed to conduct a comprehensive examination of the essential features and optimal operational parameters of a developed RF-ICP torch specifically designed for small-scale municipal solid waste (MSW) pyrolysis (mixture of paper and polypropylene) with the goal of controlling both the torch and the overall process. Using optical emission spectroscopy (OES), we measured plasma parameters, specifically (Teff) and (ne), while varying argon gas flow rates and RF powers. The (Teff) and (ne)were determined using the Boltzmann plot and Stark broadening, respectively. The RF torch was found to generate (ne) up to approximately 2.8×1020 cm−3 and (Teff) up to around 8200 K, with both parameters being controlled by the discharge power and gas flow rate. Additionally, a power-losing mechanism, namely the anomalous skin effect, was detected during the study, which is uncommon in atmospheric plasma discharge.\",\"PeriodicalId\":36729,\"journal\":{\"name\":\"Recycling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recycling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/recycling9010020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/recycling9010020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
近来,等离子体热解技术作为一种技术,在应对日益严峻的废物处理挑战以及认识到产生有价值副产品的机会方面日益突出。热解过程的效率与等离子体的特性密切相关,特别是有效电子温度(Teff)和等离子体密度(ne)。本研究旨在对专为小规模城市固体废物(MSW)热解(纸张和聚丙烯的混合物)而开发的射频-ICP 焊枪的基本特征和最佳运行参数进行全面检查,目的是控制焊枪和整个过程。我们使用光学发射光谱 (OES) 测量等离子体参数,特别是(Teff)和(ne),同时改变氩气流速和射频功率。(Teff)和(ne)分别通过玻尔兹曼图和史塔克展宽来确定。研究发现,射频炬可产生高达约 2.8×1020 cm-3 的(ne)和高达约 8200 K 的(Teff),而这两个参数均受放电功率和气体流速的控制。此外,研究还发现了一种功率损耗机制,即异常集肤效应,这在大气等离子体放电中并不常见。
Analysis of Essential Features and Optimal Operational Parameters of an RF-ICP Torch for Waste Treatment Applications
Recently, plasma-based pyrolysis has gained increasing prominence as a technology in response to the growing challenges in waste disposal and the recognition of opportunities to generate valuable by-products. The efficiency of the pyrolysis process is intricately tied to the characteristics of the plasma involved, particularly the effective electron temperature (Teff) and plasma density (ne). This study aimed to conduct a comprehensive examination of the essential features and optimal operational parameters of a developed RF-ICP torch specifically designed for small-scale municipal solid waste (MSW) pyrolysis (mixture of paper and polypropylene) with the goal of controlling both the torch and the overall process. Using optical emission spectroscopy (OES), we measured plasma parameters, specifically (Teff) and (ne), while varying argon gas flow rates and RF powers. The (Teff) and (ne)were determined using the Boltzmann plot and Stark broadening, respectively. The RF torch was found to generate (ne) up to approximately 2.8×1020 cm−3 and (Teff) up to around 8200 K, with both parameters being controlled by the discharge power and gas flow rate. Additionally, a power-losing mechanism, namely the anomalous skin effect, was detected during the study, which is uncommon in atmospheric plasma discharge.