高维 BSDE 的梯度方法

IF 0.8 Q3 STATISTICS & PROBABILITY Monte Carlo Methods and Applications Pub Date : 2024-02-14 DOI:10.1515/mcma-2024-2002
Kossi Gnameho, M. Stadje, A. Pelsser
{"title":"高维 BSDE 的梯度方法","authors":"Kossi Gnameho, M. Stadje, A. Pelsser","doi":"10.1515/mcma-2024-2002","DOIUrl":null,"url":null,"abstract":"\n We develop a Monte Carlo method to solve backward stochastic differential equations (BSDEs) in high dimensions.\nThe proposed algorithm is based on the regression-later approach using multivariate Hermite polynomials and their gradients.\nWe propose numerical experiments to illustrate its performance.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A gradient method for high-dimensional BSDEs\",\"authors\":\"Kossi Gnameho, M. Stadje, A. Pelsser\",\"doi\":\"10.1515/mcma-2024-2002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We develop a Monte Carlo method to solve backward stochastic differential equations (BSDEs) in high dimensions.\\nThe proposed algorithm is based on the regression-later approach using multivariate Hermite polynomials and their gradients.\\nWe propose numerical experiments to illustrate its performance.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2024-2002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2024-2002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种蒙特卡罗方法,用于求解高维度的后向随机微分方程(BSDE)。我们提出的算法基于后回归方法,使用多元赫米特多项式及其梯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A gradient method for high-dimensional BSDEs
We develop a Monte Carlo method to solve backward stochastic differential equations (BSDEs) in high dimensions. The proposed algorithm is based on the regression-later approach using multivariate Hermite polynomials and their gradients. We propose numerical experiments to illustrate its performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
期刊最新文献
Investigating the ecological fallacy through sampling distributions constructed from finite populations Joint application of the Monte Carlo method and computational probabilistic analysis in problems of numerical modeling with data uncertainties Choice of a constant in the expression for the error of the Monte Carlo method Estimation in shape mixtures of skew-normal linear regression models via ECM coupled with Gibbs sampling A gradient method for high-dimensional BSDEs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1