词典最大最小优化的高效近似方法

Tomasz Śliwiński
{"title":"词典最大最小优化的高效近似方法","authors":"Tomasz Śliwiński","doi":"10.26636/jtit.2024.1.1421","DOIUrl":null,"url":null,"abstract":"Lexicographic max-min (LMM) optimization is of considerable importance in many fairness-oriented applications. LMM problems can be reformulated in a way that allows to solve them by applying the standard lexicographic maximization algorithm. However, the reformulation introduces a large number of auxiliary variables and linear constraints, making the process computationally complex. In this paper, two approximation schemes for such a reformulation are presented, resulting in problem size reduction and significant performance gains. Their influence on the quality of the solution is shown in a series of computational experiments concerned with the fair network dimensioning and bandwidth allocation problem.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":"378 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Approximation Methods for Lexicographic Max-Min Optimization\",\"authors\":\"Tomasz Śliwiński\",\"doi\":\"10.26636/jtit.2024.1.1421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lexicographic max-min (LMM) optimization is of considerable importance in many fairness-oriented applications. LMM problems can be reformulated in a way that allows to solve them by applying the standard lexicographic maximization algorithm. However, the reformulation introduces a large number of auxiliary variables and linear constraints, making the process computationally complex. In this paper, two approximation schemes for such a reformulation are presented, resulting in problem size reduction and significant performance gains. Their influence on the quality of the solution is shown in a series of computational experiments concerned with the fair network dimensioning and bandwidth allocation problem.\",\"PeriodicalId\":38425,\"journal\":{\"name\":\"Journal of Telecommunications and Information Technology\",\"volume\":\"378 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26636/jtit.2024.1.1421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2024.1.1421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

词法最大最小(LMM)优化在许多以公平为导向的应用中都相当重要。LMM 问题可以重新表述,从而可以通过应用标准的词法最大化算法来解决。然而,重新表述引入了大量辅助变量和线性约束,使得计算过程变得复杂。本文介绍了这种重拟的两种近似方案,从而缩小了问题规模并显著提高了性能。在一系列有关公平网络尺寸和带宽分配问题的计算实验中,展示了这两种方案对求解质量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Approximation Methods for Lexicographic Max-Min Optimization
Lexicographic max-min (LMM) optimization is of considerable importance in many fairness-oriented applications. LMM problems can be reformulated in a way that allows to solve them by applying the standard lexicographic maximization algorithm. However, the reformulation introduces a large number of auxiliary variables and linear constraints, making the process computationally complex. In this paper, two approximation schemes for such a reformulation are presented, resulting in problem size reduction and significant performance gains. Their influence on the quality of the solution is shown in a series of computational experiments concerned with the fair network dimensioning and bandwidth allocation problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Telecommunications and Information Technology
Journal of Telecommunications and Information Technology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
34
期刊最新文献
High-isolation Quad-port MIMO Antenna for 5G Applications A Generalized Learning Approach to Deep Neural Networks Increasing Parallelism in Forward-backward Distributed Algorithm for Finding Strongly Connected Components of Directed Graphs Analyzing Performance of THz Band Graphene-Based MIMO Antenna for 6G Applications Multiprobe Planar Near-field Range Antenna Measurement System with Improved Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1