{"title":"监测地表温度与越南海阳省土地利用和土地覆盖的关系","authors":"B. Thien, Asya E. Ovsepyan, V. T. Phuong","doi":"10.32526/ennrj/22/20230194","DOIUrl":null,"url":null,"abstract":"This study utilised remote sensing data and ArcGIS 10.8 software to evaluate changes in land use and land cover (LULC) and their effects on land surface temperature (LST) in Hai Duong Province, Vietnam, from 1992 to 2022. Landsat satellite data were pre-processed and classified using supervised methods for the years 1992, 2010, and 2022. In 1992, vegetation cover accounted for 57.89% of land cover, increasing to 84.49% in 2010, but then decreasing again to 66.67% in 2022. In contrast, the built-up area consistently increased, from 2.88% in 1992 to 29.35% in 2022, as most of the barren land present in 1992 became built-up area in 2022. The LST values were calculated from the thermal bands for the years 1992, 2010, and 2022 and ranged from 16.09°C to 34.27°C, 17.04°C to 36.74°C, and 11.03°C to 28.44°C, respectively. In addition, the Normalized Difference Vegetation Index (NDVI) values were calculated using the near-infrared band and the red band, with values ranging from -0.40 to 0.70 over the study period. A linear regression analysis indicated a shift in the correlation between NDVI and LST from positive to negative. This study highlights the significant transformation that occurred in Hai Duong Province due to rapid population density increases, urban growth and infrastructure development, leading to a decline in greenery. These LULC changes can cause severe environmental damage. These research findings will assist policymakers in formulating management strategies and sustainable land-use plans to minimize potential harm and promote sustainable development in the area.","PeriodicalId":11784,"journal":{"name":"Environment and Natural Resources Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring Land Surface Temperature Relationship to Land Use and Land Cover in Hai Duong Province, Vietnam\",\"authors\":\"B. Thien, Asya E. Ovsepyan, V. T. Phuong\",\"doi\":\"10.32526/ennrj/22/20230194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study utilised remote sensing data and ArcGIS 10.8 software to evaluate changes in land use and land cover (LULC) and their effects on land surface temperature (LST) in Hai Duong Province, Vietnam, from 1992 to 2022. Landsat satellite data were pre-processed and classified using supervised methods for the years 1992, 2010, and 2022. In 1992, vegetation cover accounted for 57.89% of land cover, increasing to 84.49% in 2010, but then decreasing again to 66.67% in 2022. In contrast, the built-up area consistently increased, from 2.88% in 1992 to 29.35% in 2022, as most of the barren land present in 1992 became built-up area in 2022. The LST values were calculated from the thermal bands for the years 1992, 2010, and 2022 and ranged from 16.09°C to 34.27°C, 17.04°C to 36.74°C, and 11.03°C to 28.44°C, respectively. In addition, the Normalized Difference Vegetation Index (NDVI) values were calculated using the near-infrared band and the red band, with values ranging from -0.40 to 0.70 over the study period. A linear regression analysis indicated a shift in the correlation between NDVI and LST from positive to negative. This study highlights the significant transformation that occurred in Hai Duong Province due to rapid population density increases, urban growth and infrastructure development, leading to a decline in greenery. These LULC changes can cause severe environmental damage. These research findings will assist policymakers in formulating management strategies and sustainable land-use plans to minimize potential harm and promote sustainable development in the area.\",\"PeriodicalId\":11784,\"journal\":{\"name\":\"Environment and Natural Resources Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Natural Resources Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32526/ennrj/22/20230194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32526/ennrj/22/20230194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Monitoring Land Surface Temperature Relationship to Land Use and Land Cover in Hai Duong Province, Vietnam
This study utilised remote sensing data and ArcGIS 10.8 software to evaluate changes in land use and land cover (LULC) and their effects on land surface temperature (LST) in Hai Duong Province, Vietnam, from 1992 to 2022. Landsat satellite data were pre-processed and classified using supervised methods for the years 1992, 2010, and 2022. In 1992, vegetation cover accounted for 57.89% of land cover, increasing to 84.49% in 2010, but then decreasing again to 66.67% in 2022. In contrast, the built-up area consistently increased, from 2.88% in 1992 to 29.35% in 2022, as most of the barren land present in 1992 became built-up area in 2022. The LST values were calculated from the thermal bands for the years 1992, 2010, and 2022 and ranged from 16.09°C to 34.27°C, 17.04°C to 36.74°C, and 11.03°C to 28.44°C, respectively. In addition, the Normalized Difference Vegetation Index (NDVI) values were calculated using the near-infrared band and the red band, with values ranging from -0.40 to 0.70 over the study period. A linear regression analysis indicated a shift in the correlation between NDVI and LST from positive to negative. This study highlights the significant transformation that occurred in Hai Duong Province due to rapid population density increases, urban growth and infrastructure development, leading to a decline in greenery. These LULC changes can cause severe environmental damage. These research findings will assist policymakers in formulating management strategies and sustainable land-use plans to minimize potential harm and promote sustainable development in the area.
期刊介绍:
The Environment and Natural Resources Journal is a peer-reviewed journal, which provides insight scientific knowledge into the diverse dimensions of integrated environmental and natural resource management. The journal aims to provide a platform for exchange and distribution of the knowledge and cutting-edge research in the fields of environmental science and natural resource management to academicians, scientists and researchers. The journal accepts a varied array of manuscripts on all aspects of environmental science and natural resource management. The journal scope covers the integration of multidisciplinary sciences for prevention, control, treatment, environmental clean-up and restoration. The study of the existing or emerging problems of environment and natural resources in the region of Southeast Asia and the creation of novel knowledge and/or recommendations of mitigation measures for sustainable development policies are emphasized. The subject areas are diverse, but specific topics of interest include: -Biodiversity -Climate change -Detection and monitoring of polluted sources e.g., industry, mining -Disaster e.g., forest fire, flooding, earthquake, tsunami, or tidal wave -Ecological/Environmental modelling -Emerging contaminants/hazardous wastes investigation and remediation -Environmental dynamics e.g., coastal erosion, sea level rise -Environmental assessment tools, policy and management e.g., GIS, remote sensing, Environmental -Management System (EMS) -Environmental pollution and other novel solutions to pollution -Remediation technology of contaminated environments -Transboundary pollution -Waste and wastewater treatments and disposal technology