欠驱动无人水面飞行器的避障和装配编队:基于扰动流体的解决方案

Yiping Liu, Jianqiang Zhang, B. Sui, Yuanyuan Zhang
{"title":"欠驱动无人水面飞行器的避障和装配编队:基于扰动流体的解决方案","authors":"Yiping Liu, Jianqiang Zhang, B. Sui, Yuanyuan Zhang","doi":"10.1177/00202940241226854","DOIUrl":null,"url":null,"abstract":"Unmanned surface vehicles (USVs) are highly manoeuvrable and autonomous, and hold significant potential for both military and civilian applications, particularly in formation operations. However, because of their underactuated nature, USVs struggle to navigate in complex maritime conditions during formation. At present, most of the technology is devoted to Unmanned Areial Vehicles and ground robots; these methods cannot be well applied to underactuated USVs. Moreover, the rationality of local path planning decision-making for underactuated USVs formation is still lacking. This study proposes an interfered fluid dynamic system (IFDS)-based local path planning method, called USV-IFDS, specifically designed for the formation of underactuated USVs. This method incorporates the IFDS obstacle avoidance approach, while adapting it through modifications and the inclusion of the kinematic constraints of USVs, thereby enhancing its applicability to the maritime environment. By decomposing the flow field velocity vector and implementing a formation control strategy, we effectively address the challenges in forming underactuated USVs and enhance the efficiency of USV formation local path planning. The proposed formation technique is predicated on the highly robust virtual structure method. Simulations of formation local path planning indicate that our method produces smooth paths, therefore validating its practical applicability to underactuated USV formations.","PeriodicalId":510299,"journal":{"name":"Measurement and Control","volume":"226 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Underactuated unmanned surface vehicles formation of obstacle avoidance and assembly: A disturbed fluid-based solution\",\"authors\":\"Yiping Liu, Jianqiang Zhang, B. Sui, Yuanyuan Zhang\",\"doi\":\"10.1177/00202940241226854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned surface vehicles (USVs) are highly manoeuvrable and autonomous, and hold significant potential for both military and civilian applications, particularly in formation operations. However, because of their underactuated nature, USVs struggle to navigate in complex maritime conditions during formation. At present, most of the technology is devoted to Unmanned Areial Vehicles and ground robots; these methods cannot be well applied to underactuated USVs. Moreover, the rationality of local path planning decision-making for underactuated USVs formation is still lacking. This study proposes an interfered fluid dynamic system (IFDS)-based local path planning method, called USV-IFDS, specifically designed for the formation of underactuated USVs. This method incorporates the IFDS obstacle avoidance approach, while adapting it through modifications and the inclusion of the kinematic constraints of USVs, thereby enhancing its applicability to the maritime environment. By decomposing the flow field velocity vector and implementing a formation control strategy, we effectively address the challenges in forming underactuated USVs and enhance the efficiency of USV formation local path planning. The proposed formation technique is predicated on the highly robust virtual structure method. Simulations of formation local path planning indicate that our method produces smooth paths, therefore validating its practical applicability to underactuated USV formations.\",\"PeriodicalId\":510299,\"journal\":{\"name\":\"Measurement and Control\",\"volume\":\"226 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940241226854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940241226854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无人水面航行器(USV)具有高度机动性和自主性,在军事和民用领域都具有巨大的应用潜力,尤其是在编队行动中。然而,由于其驱动力不足的特性,无人水面飞行器在编队时很难在复杂的海洋条件下航行。目前,大部分技术都用于无人飞行器和地面机器人;这些方法不能很好地应用于动力不足的 USV。此外,欠驱动 USV 编队的局部路径规划决策的合理性仍然缺乏。本研究提出了一种基于干扰流体动力系统(IFDS)的局部路径规划方法,称为 USV-IFDS,专门用于欠驱动 USV 的编队。该方法结合了 IFDS 避障方法,同时通过修改和加入 USV 的运动学约束对其进行了调整,从而增强了其在海洋环境中的适用性。通过分解流场速度矢量和实施编队控制策略,我们有效地解决了动力不足 USV 编队的难题,并提高了 USV 编队局部路径规划的效率。所提出的编队技术基于高鲁棒性的虚拟结构方法。编队局部路径规划的仿真表明,我们的方法能产生平滑的路径,因此验证了其在欠驱动 USV 编队中的实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Underactuated unmanned surface vehicles formation of obstacle avoidance and assembly: A disturbed fluid-based solution
Unmanned surface vehicles (USVs) are highly manoeuvrable and autonomous, and hold significant potential for both military and civilian applications, particularly in formation operations. However, because of their underactuated nature, USVs struggle to navigate in complex maritime conditions during formation. At present, most of the technology is devoted to Unmanned Areial Vehicles and ground robots; these methods cannot be well applied to underactuated USVs. Moreover, the rationality of local path planning decision-making for underactuated USVs formation is still lacking. This study proposes an interfered fluid dynamic system (IFDS)-based local path planning method, called USV-IFDS, specifically designed for the formation of underactuated USVs. This method incorporates the IFDS obstacle avoidance approach, while adapting it through modifications and the inclusion of the kinematic constraints of USVs, thereby enhancing its applicability to the maritime environment. By decomposing the flow field velocity vector and implementing a formation control strategy, we effectively address the challenges in forming underactuated USVs and enhance the efficiency of USV formation local path planning. The proposed formation technique is predicated on the highly robust virtual structure method. Simulations of formation local path planning indicate that our method produces smooth paths, therefore validating its practical applicability to underactuated USV formations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating math education in reducing math anxiety with the help of Data Envelopment Analysis Optimal control technique applied to the minimization of uncertainty measurements in surveying instruments Development of motion control function library based on PLCopen specification Tillage depth dynamic monitoring and precise control system Semantic mapping techniques for indoor mobile robots: Review and prospect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1