聚吡咯涂层三维间隔织物的电气和机械特性研究

Juan Luo, Si Chen, Da-Wei Shi
{"title":"聚吡咯涂层三维间隔织物的电气和机械特性研究","authors":"Juan Luo, Si Chen, Da-Wei Shi","doi":"10.1177/24723444231220696","DOIUrl":null,"url":null,"abstract":"In this study, the liquid phase oxidative polymerization method was utilized to prepare polypyrrole conductive three-dimensional spacer fabrics. By controlling pyrrole solution, oxidant FeCl3 solution, dopant p-toluene sulfonic acid concentration and reaction time, the optimal process for the preparation of conductive spacer fabrics was obtained. This led to the best preparation process of polypyrrole-coated three-dimensional spacer conductive fabric (polypyrrole/three-dimensional spacer fabrics) being obtained. The results showed that the conductive properties of polypyrrole/three-dimensional spacer fabrics were the best when 0.10 mol/L pyrrole, 0.40 mol/L oxidant FeCl3 solution, and 0.40 mol/L dopant p-toluene sulfonic acid were prepared within a 2-h reaction time. The properties of polypyrrole/three-dimensional spacer fabrics were analyzed using the results from surface resistance, Fourier transform-infrared spectroscopy, mechanical properties, and stability tests. The results showed that polypyrrole was well attached to the three-dimensional spacer fabric surface, and the concentration of polypyrrole in the fabric exhibited an inverse correlation with changes in surface resistance. The mechanical properties of polypyrrole/three-dimensional spacer fabrics after treatment exhibit superior performance, with consistent changes in the meridional and zonal electrical properties during tensile testing and can maintain excellent long-term electrical stability in atmospheric environments.","PeriodicalId":502144,"journal":{"name":"AATCC Journal of Research","volume":"150 41","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Electrical and Mechanical Properties of Polypyrrole-Coated three-dimensional Spacer Fabric\",\"authors\":\"Juan Luo, Si Chen, Da-Wei Shi\",\"doi\":\"10.1177/24723444231220696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the liquid phase oxidative polymerization method was utilized to prepare polypyrrole conductive three-dimensional spacer fabrics. By controlling pyrrole solution, oxidant FeCl3 solution, dopant p-toluene sulfonic acid concentration and reaction time, the optimal process for the preparation of conductive spacer fabrics was obtained. This led to the best preparation process of polypyrrole-coated three-dimensional spacer conductive fabric (polypyrrole/three-dimensional spacer fabrics) being obtained. The results showed that the conductive properties of polypyrrole/three-dimensional spacer fabrics were the best when 0.10 mol/L pyrrole, 0.40 mol/L oxidant FeCl3 solution, and 0.40 mol/L dopant p-toluene sulfonic acid were prepared within a 2-h reaction time. The properties of polypyrrole/three-dimensional spacer fabrics were analyzed using the results from surface resistance, Fourier transform-infrared spectroscopy, mechanical properties, and stability tests. The results showed that polypyrrole was well attached to the three-dimensional spacer fabric surface, and the concentration of polypyrrole in the fabric exhibited an inverse correlation with changes in surface resistance. The mechanical properties of polypyrrole/three-dimensional spacer fabrics after treatment exhibit superior performance, with consistent changes in the meridional and zonal electrical properties during tensile testing and can maintain excellent long-term electrical stability in atmospheric environments.\",\"PeriodicalId\":502144,\"journal\":{\"name\":\"AATCC Journal of Research\",\"volume\":\"150 41\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AATCC Journal of Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/24723444231220696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AATCC Journal of Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/24723444231220696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用液相氧化聚合法制备了聚吡咯导电三维间隔织物。通过控制吡咯溶液、氧化剂 FeCl3 溶液、掺杂剂对甲苯磺酸浓度和反应时间,获得了制备导电间隔织物的最佳工艺。从而获得了聚吡咯涂层三维间隔导电织物(聚吡咯/三维间隔织物)的最佳制备工艺。结果表明,在 2 小时反应时间内制备 0.10 摩尔/升吡咯、0.40 摩尔/升氧化剂 FeCl3 溶液和 0.40 摩尔/升掺杂剂对甲苯磺酸时,聚吡咯/三维间隔导电织物的导电性能最佳。利用表面电阻、傅立叶变换红外光谱、机械性能和稳定性测试结果分析了聚吡咯/三维间隔织物的性能。结果表明,聚吡咯能很好地附着在三维间隔织物表面,织物中聚吡咯的浓度与表面电阻的变化呈反比。处理后的聚吡咯/三维间隔织物的机械性能表现优异,在拉伸测试中,经向和区向电性能变化一致,并能在大气环境中保持良好的长期电稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of Electrical and Mechanical Properties of Polypyrrole-Coated three-dimensional Spacer Fabric
In this study, the liquid phase oxidative polymerization method was utilized to prepare polypyrrole conductive three-dimensional spacer fabrics. By controlling pyrrole solution, oxidant FeCl3 solution, dopant p-toluene sulfonic acid concentration and reaction time, the optimal process for the preparation of conductive spacer fabrics was obtained. This led to the best preparation process of polypyrrole-coated three-dimensional spacer conductive fabric (polypyrrole/three-dimensional spacer fabrics) being obtained. The results showed that the conductive properties of polypyrrole/three-dimensional spacer fabrics were the best when 0.10 mol/L pyrrole, 0.40 mol/L oxidant FeCl3 solution, and 0.40 mol/L dopant p-toluene sulfonic acid were prepared within a 2-h reaction time. The properties of polypyrrole/three-dimensional spacer fabrics were analyzed using the results from surface resistance, Fourier transform-infrared spectroscopy, mechanical properties, and stability tests. The results showed that polypyrrole was well attached to the three-dimensional spacer fabric surface, and the concentration of polypyrrole in the fabric exhibited an inverse correlation with changes in surface resistance. The mechanical properties of polypyrrole/three-dimensional spacer fabrics after treatment exhibit superior performance, with consistent changes in the meridional and zonal electrical properties during tensile testing and can maintain excellent long-term electrical stability in atmospheric environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Durable Water-Repellent Finishing in Thermal Liner on Firefighter Heat Stress Cellulose nanofiber as mask/personal protective equipment surface agent for enhanced anti-bacterial performance Remediation of Per- and Polyfluoroalkyl Substances in Nonwoven Production and Paper Sectors: A Brief Review Nigella sativa Embedded Co-axial Electrospun PVA–Collagen Composite Nanofibrous Membrane for Biomedical Applications Development of Partition-Designed Outdoor Workwear with Optimal Fabric Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1