重型越野车 300L 钢制油箱的综合设计与分析:数值与实验启示

IF 2 Q2 ENGINEERING, MECHANICAL Frontiers in Mechanical Engineering Pub Date : 2024-02-12 DOI:10.3389/fmech.2024.1360590
Aditya Verma, Ravi Shankar, Ameer Malik Shaik, B. Veera Siva Reddy, C. Chandrasekhara Sastry, Nizmi Shaik, Sachin Salunkhe, R. Čep, Emad S. Abouel Nasr
{"title":"重型越野车 300L 钢制油箱的综合设计与分析:数值与实验启示","authors":"Aditya Verma, Ravi Shankar, Ameer Malik Shaik, B. Veera Siva Reddy, C. Chandrasekhara Sastry, Nizmi Shaik, Sachin Salunkhe, R. Čep, Emad S. Abouel Nasr","doi":"10.3389/fmech.2024.1360590","DOIUrl":null,"url":null,"abstract":"Introduction: This study presents a comprehensive design and analysis of a 300L steel fuel tank intended for heavy off-road vehicles. The design process integrates numerical simulations and experimental investigations to optimize the tank's performance and durability under various operating conditions.Methods: The design methodology involves CAD model optimization, numerical analysis setup, and experimental validation. CAD model optimization simplifies the tank geometry while retaining structural integrity. Numerical analysis setup includes defining boundary conditions, meshing strategies, and simulation parameters. Experimental validation entails testing the tank under dynamic loading conditions to assess its structural response.Results: Numerical simulations reveal insights into stress distribution, deformation behavior, and fluid dynamics within the tank. Experimental tests confirm the numerical predictions and provide valuable data for model validation. Key results include stress concentrations in critical areas, deformation patterns under different loading conditions, and fluid flow characteristics.Discussion: The integrated approach combining numerical simulations and experimental tests offers a comprehensive understanding of the fuel tank's behavior. Findings highlight areas for design improvement, such as reinforcement of stress-prone regions and optimization of fluid flow dynamics. The study contributes to enhancing the performance, reliability, and safety of fuel tanks for heavy off-road vehicles.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive design and analysis of a 300L steel fuel tank for heavy off-road vehicles: numerical and experimental insights\",\"authors\":\"Aditya Verma, Ravi Shankar, Ameer Malik Shaik, B. Veera Siva Reddy, C. Chandrasekhara Sastry, Nizmi Shaik, Sachin Salunkhe, R. Čep, Emad S. Abouel Nasr\",\"doi\":\"10.3389/fmech.2024.1360590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: This study presents a comprehensive design and analysis of a 300L steel fuel tank intended for heavy off-road vehicles. The design process integrates numerical simulations and experimental investigations to optimize the tank's performance and durability under various operating conditions.Methods: The design methodology involves CAD model optimization, numerical analysis setup, and experimental validation. CAD model optimization simplifies the tank geometry while retaining structural integrity. Numerical analysis setup includes defining boundary conditions, meshing strategies, and simulation parameters. Experimental validation entails testing the tank under dynamic loading conditions to assess its structural response.Results: Numerical simulations reveal insights into stress distribution, deformation behavior, and fluid dynamics within the tank. Experimental tests confirm the numerical predictions and provide valuable data for model validation. Key results include stress concentrations in critical areas, deformation patterns under different loading conditions, and fluid flow characteristics.Discussion: The integrated approach combining numerical simulations and experimental tests offers a comprehensive understanding of the fuel tank's behavior. Findings highlight areas for design improvement, such as reinforcement of stress-prone regions and optimization of fluid flow dynamics. The study contributes to enhancing the performance, reliability, and safety of fuel tanks for heavy off-road vehicles.\",\"PeriodicalId\":53220,\"journal\":{\"name\":\"Frontiers in Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fmech.2024.1360590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmech.2024.1360590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

简介本研究对用于重型越野车的 300L 钢制油箱进行了全面设计和分析。设计过程结合了数值模拟和实验研究,以优化油箱在各种工作条件下的性能和耐用性:设计方法包括 CAD 模型优化、数值分析设置和实验验证。CAD 模型优化简化了油箱的几何形状,同时保持了结构的完整性。数值分析设置包括定义边界条件、网格策略和模拟参数。实验验证包括在动态加载条件下测试水箱,以评估其结构响应:结果:数值模拟揭示了水箱内部的应力分布、变形行为和流体动力学。实验测试证实了数值预测,并为模型验证提供了宝贵数据。主要结果包括关键区域的应力集中、不同加载条件下的变形模式以及流体流动特性:讨论:结合数值模拟和实验测试的综合方法提供了对油箱行为的全面了解。研究结果突出了设计改进的领域,如应力易发区域的加固和流体流动动力学的优化。这项研究有助于提高重型越野车油箱的性能、可靠性和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive design and analysis of a 300L steel fuel tank for heavy off-road vehicles: numerical and experimental insights
Introduction: This study presents a comprehensive design and analysis of a 300L steel fuel tank intended for heavy off-road vehicles. The design process integrates numerical simulations and experimental investigations to optimize the tank's performance and durability under various operating conditions.Methods: The design methodology involves CAD model optimization, numerical analysis setup, and experimental validation. CAD model optimization simplifies the tank geometry while retaining structural integrity. Numerical analysis setup includes defining boundary conditions, meshing strategies, and simulation parameters. Experimental validation entails testing the tank under dynamic loading conditions to assess its structural response.Results: Numerical simulations reveal insights into stress distribution, deformation behavior, and fluid dynamics within the tank. Experimental tests confirm the numerical predictions and provide valuable data for model validation. Key results include stress concentrations in critical areas, deformation patterns under different loading conditions, and fluid flow characteristics.Discussion: The integrated approach combining numerical simulations and experimental tests offers a comprehensive understanding of the fuel tank's behavior. Findings highlight areas for design improvement, such as reinforcement of stress-prone regions and optimization of fluid flow dynamics. The study contributes to enhancing the performance, reliability, and safety of fuel tanks for heavy off-road vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Mechanical Engineering
Frontiers in Mechanical Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
4.40
自引率
0.00%
发文量
115
审稿时长
14 weeks
期刊最新文献
Finite element analysis and automation of a medium scale grinder applied to the manufacture of cassava starch Editorial: Lightweight mechanical and aerospace structures and materials Analysis of the thickness of layered armor to provide protection against 7.62 mm ball projectiles using experimental and numerical methods Parameter fuzzy rectification for sliding mode control of five-phase permanent magnet synchronous motor speed control system Surrogate-based worst-case analysis of a knee joint model using Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1