船上支持海上作业的联合模拟方法:Palfinger 起重机路径规划案例

Zizheng Liu, Y. Chu, Guoyuan Li, H. P. Hildre, Houxiang Zhang
{"title":"船上支持海上作业的联合模拟方法:Palfinger 起重机路径规划案例","authors":"Zizheng Liu, Y. Chu, Guoyuan Li, H. P. Hildre, Houxiang Zhang","doi":"10.1177/00375497241228623","DOIUrl":null,"url":null,"abstract":"Marine cranes are one of the most important industrial equipment in the maritime field. The base of a marine crane is dynamically moving as the motion of the ship’s six degrees of freedom that is affected by offshore environmental loads. There is a coupling between the crane and the ship, which means the crane operation and the ship motion affect each other. In this paper, co-simulation technology is employed to construct the virtual marine operation system which is composed of diverse Functional Mock-Up Units (FMUs) exported using the Functional Mock-Up Interface (FMI) standard and System Structure and Parameterization (SSP) standard to define the structure and parameters based on the co-simulation platform Vico. A path planning case for the Palfinger crane is implemented using the A* algorithm. The physical three-dimensional working space of the crane is discretized into a finite number of nodes in joint space. The cost is defined by the variable of the ship motion to optimize the marine operation. The obtained discrete nodes are smoothed to get the velocity of the actuators as control signals. Simulation of the crane operation is carried out in the virtual operating system following the planned path.","PeriodicalId":501452,"journal":{"name":"SIMULATION","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A co-simulation approach to onboard support of marine operation: a Palfinger crane path planning case\",\"authors\":\"Zizheng Liu, Y. Chu, Guoyuan Li, H. P. Hildre, Houxiang Zhang\",\"doi\":\"10.1177/00375497241228623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marine cranes are one of the most important industrial equipment in the maritime field. The base of a marine crane is dynamically moving as the motion of the ship’s six degrees of freedom that is affected by offshore environmental loads. There is a coupling between the crane and the ship, which means the crane operation and the ship motion affect each other. In this paper, co-simulation technology is employed to construct the virtual marine operation system which is composed of diverse Functional Mock-Up Units (FMUs) exported using the Functional Mock-Up Interface (FMI) standard and System Structure and Parameterization (SSP) standard to define the structure and parameters based on the co-simulation platform Vico. A path planning case for the Palfinger crane is implemented using the A* algorithm. The physical three-dimensional working space of the crane is discretized into a finite number of nodes in joint space. The cost is defined by the variable of the ship motion to optimize the marine operation. The obtained discrete nodes are smoothed to get the velocity of the actuators as control signals. Simulation of the crane operation is carried out in the virtual operating system following the planned path.\",\"PeriodicalId\":501452,\"journal\":{\"name\":\"SIMULATION\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIMULATION\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00375497241228623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIMULATION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00375497241228623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

船用起重机是海事领域最重要的工业设备之一。船用起重机的底座随着船舶六个自由度的运动而动态运动,并受到近海环境负荷的影响。起重机与船舶之间存在耦合关系,即起重机的运行与船舶的运动相互影响。本文采用协同仿真技术构建了虚拟海洋作业系统,该系统由不同的功能模拟单元(FMU)组成,使用功能模拟接口(FMI)标准和系统结构与参数化(SSP)标准导出,以协同仿真平台 Vico 为基础定义结构和参数。使用 A* 算法实现了 Palfinger 起重机的路径规划案例。起重机的物理三维工作空间被离散化为有限数量的关节空间节点。成本由船舶运动变量定义,以优化海上作业。对得到的离散节点进行平滑处理,以得到执行器的速度作为控制信号。在虚拟操作系统中,按照规划的路径对起重机的运行进行模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A co-simulation approach to onboard support of marine operation: a Palfinger crane path planning case
Marine cranes are one of the most important industrial equipment in the maritime field. The base of a marine crane is dynamically moving as the motion of the ship’s six degrees of freedom that is affected by offshore environmental loads. There is a coupling between the crane and the ship, which means the crane operation and the ship motion affect each other. In this paper, co-simulation technology is employed to construct the virtual marine operation system which is composed of diverse Functional Mock-Up Units (FMUs) exported using the Functional Mock-Up Interface (FMI) standard and System Structure and Parameterization (SSP) standard to define the structure and parameters based on the co-simulation platform Vico. A path planning case for the Palfinger crane is implemented using the A* algorithm. The physical three-dimensional working space of the crane is discretized into a finite number of nodes in joint space. The cost is defined by the variable of the ship motion to optimize the marine operation. The obtained discrete nodes are smoothed to get the velocity of the actuators as control signals. Simulation of the crane operation is carried out in the virtual operating system following the planned path.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulating cyberattacks with extended Petri nets Special Issue: Engineering of Dependable Digital Twins Calibration method for microscopic traffic simulation considering lane difference Serial and parallel algorithms for short time horizon multi-attribute queries on stochastic multi-agent systems Agent-based simulation of citizens’ satisfaction in smart cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1